310 CHAPTER 13. THE GENERALIZED RIEMANN INTEGRAL

split again according to whether j ≥ n or j < n. Thus∣∣∣∣S (P, fn)−∫ b

afndF

∣∣∣∣=∣∣∣∣∣ ∞

∑j=N

∑i∈I j

fn (ti)∆Fi−∞

∑j=N

∑i∈I j

∫Ii

fndF

∣∣∣∣∣Next, split further according to whether j ≥ n.∣∣∣∣S (P, fn)−

∫ b

afndF

∣∣∣∣≤∣∣∣∣∣ ∞

∑j=n

∑i∈I j

fn (ti)∆Fi−∞

∑j=n

∑i∈I j

∫Ii

fndF

∣∣∣∣∣ (13.9)

+

∣∣∣∣∣n−1

∑j=N

∑i∈I j

fn (ti)∆Fi−n−1

∑j=N

∑i∈I j

∫Ii

fndF

∣∣∣∣∣ (13.10)

By 13.8,

≤ η +

∣∣∣∣∣n−1

∑j=N

∑i∈I j

∫Ii

fndF−n−1

∑j=N

∑i∈I j

fn (ti)∆Fi

∣∣∣∣∣ (13.11)

Next split up the last term in 13.11.∣∣∣∣∣n−1

∑j=N

∑i∈I j

∫Ii

fndF−n−1

∑j=N

∑i∈I j

fn (ti)∆Fi

∣∣∣∣∣≤

∣∣∣∣∣n−1

∑j=N

∑i∈I j

∫Ii

fndF−n−1

∑j=N

∑i∈I j

∫Ii

f jdF

∣∣∣∣∣ (13.12)

+

∣∣∣∣∣n−1

∑j=N

∑i∈I j

∫Ii

f jdF−n−1

∑j=N

∑i∈I j

f j (ti)∆Fi

∣∣∣∣∣ (13.13)

+

∣∣∣∣∣n−1

∑j=N

∑i∈I j

f j (ti)∆Fi−n−1

∑j=N

∑i∈I j

fn (ti)∆Fi

∣∣∣∣∣ (13.14)

Then 13.12 is∣∣∣∑n−1

j=N ∑i∈I j

∫Ii fndF−∑

n−1j=N ∑i∈I j

∫Ii f jdF

∣∣∣=n−1

∑j=N

∑i=I j

∫Ii( fn− f j)dF ≤

∫ b

afndF−

∫ b

af jdF ≤ I−

∫ b

afNdF < η

Next consider 13.13. This term satisfies∣∣∣∣∣n−1

∑j=N

∑i∈I j

∫Ii

f jdF−n−1

∑j=N

∑i∈I j

f j (ti)∆Fi

∣∣∣∣∣≤∞

∑j=N

∣∣∣∣∣ ∑i∈I j

∫Ii

f jdF− ∑i∈I j

f j (ti)∆Fi

∣∣∣∣∣≤ ∞

∑j=N

η2−( j+1) ≤ η

310 CHAPTER 13. THE GENERALIZED RIEMANN INTEGRALsplit again according to whether j > n or j <n. ThusYY flu ar— Y | fad FppJ=N ig F;bsem) | fa =Next, split further according to whether j > n.s¢ (P, fn) — [ “falP| < y Y fn (t;) AF; — y yY | har (13.9)J=nicF; J=nie JF;n—1+) Y fa (ti) AF — Df far (13.10)J=Nie Fj j= MdBy 13.8,n=1 n—1<n+|¥ Y | ad Ye fal) ak (3.4)J=N ie F; j=Nie JZ;Next split up the last term in 13.11.n—-1ia fidF YY falti) AFj= Ld J=NieF;= n—|XE hear yy [ far (13.12)J=N J=NiEF;jd F — x y fi (ti) AFi (13.13)J=N J=N ie F;= n—1i(t)) AFi— ) fn (ti) AF; (13.14)J=Nie JF; J=Nie.F;Then 13.12 isjon Lie x; Jy dnd F —Vi=N Lie y, [, fi | =n—1 b b b» Y [ h—sar < | fndF ~ | faP <1— | IndF <1j=Ni= 5; jjNext consider 13.13. This term satisfiesn—1 n—-1YY | far-Y Y Haar <J=N ig. G7" J=NiEF;Y | far Y f(t) AK < ne <niE.F; iEF;J= d