B.3. THE YOUNG INTEGRAL 381
Also let P be a dissection 0 = t0 < t1 < · · ·< tr = T .Claim: Then there exists ti such that ω (ti−1, ti+1)≤ 5
r ω (0,T ).Proof of claim: If r = 2 so there are only two intervals in the dissection,
∥F∥pp,[0,T ] ≤ ∥F∥
pp,[0,T ]+∥Z∥
pp,[0,T ] = ω (0,T )<
52
ω (0,T ) .
So assume r > 2. Then how many disjoint intervals [ti−1, ti+1] are there for either i odd or ieven? Certainly fewer than r and at least as many as r
2 . Then we have
∑i even
ω (ti−1, ti+1)+ ∑i odd
ω (ti−1, ti+1)≤ 2ω (0,T )
Now if it is not true that there exists such an i, then for each i,ω (ti−1, ti+1)>5r ω (0,T ) .
52
ω (0,T ) =5r
ω (0,T )r2≤ ∑
i even
5r
ω (0,T )< ∑i even
ω (ti−1, ti+1)≤ ω (0,T )
52
ω (0,T ) =5r
ω (0,T )r2≤ ∑
i odd
5r
ω (0,T )< ∑i odd
ω (ti−1, ti+1)≤ ω (0,T )
Hence 5ω (0,T )< 2ω (0,T ) which is absurd. Therefore, there exists such a ti. This showsthe claim.
Next points of P are deleted beginning with ti where ω (ti−1, ti+1)≤ 5r ω (0,T ) .∫
PZdF−
∫P\{ti}
ZdF = Z (ti−1)(F (ti)−F (ti−1))
+Z (ti)(F (ti+1)−F (ti))−Z (ti−1)(F (ti+1)−F (ti−1))
This equals Z (ti−1)F (ti)+Z (ti)F (ti+1)−Z (ti)F (ti)−Z (ti−1)F (ti+1)
= Z (ti)(F (ti+1)−F (ti))+Z (ti−1)(F (ti)−F (ti+1))
= (Z (ti)−Z (ti−1))(F (ti+1)−F (ti))
It follows that∣∣∣∣∫P
ZdF−∫
P\{ti}ZdF
∣∣∣∣≤ |(Z (ti)−Z (ti−1))| |F (ti+1)−F (ti)|
≤ ω (ti−1, ti)1/q
ω (ti, ti+1)1/p ≤ ω (ti−1, ti+1)
1/p+1/q ≤(
5r
ω (0,T ))1/p+1/q
In particular, this yields∣∣∣∣∫P(Y −Y (0))dF−
∫P\{ti}
(Y −Y (0))dF∣∣∣∣≤ (5
rω (0,T )
)1/p+1/q
=
(5r
(∥F∥p
p,[0,T ]+∥Y∥qq,[0,T ]
))1/p+1/q