382 APPENDIX B. INTEGRATION ON ROUGH PATHS∗
It follows that removing the special point from the claim out of those ti which remain,denoted as t1, t2, t3, · · · ,∣∣∣∣∣
∫P(Y −Y (0))dF−
∫P\{t1}
(Y −Y (0))dF
∣∣∣∣∣+
∣∣∣∣∣∫
P\{t1}(Y −Y (0))dF−
∫P\{t1,t2}
(Y −Y (0))dF
∣∣∣∣∣++ · · ·+
∣∣∣∣∣∫
P\{t1,t2,···tr−2}(Y −Y (0))dF−
∫P\{t1,t2,···tr−1}
(Y −Y (0))dF
∣∣∣∣∣≤ 51/p+1/q (ω (0,T ))1/p+1/q
((1r
)1/p+1/q
+
(1
r−1
)1/p+1/q
+ · · ·+1
)
≤ 51/p+1/q (ω (0,T ))1/p+1/q∞
∑r=1
(1r
)1/p+1/q
The triangle inequality applied to that sum of terms inside || implies∣∣∣∣∣∫
P(Y −Y (0))dF−
∫P\{t1,t2,···tr−1}
(Y −Y (0))dF
∣∣∣∣∣=
∣∣∣∣∫P(Y −Y (0))dF
∣∣∣∣≤ 51/p+1/q (ω (0,T ))1/p+1/q∞
∑r=1
(1r
)1/p+1/q
since∫P\{t1,t2,···tr−1} (Y −Y (0))dF = 0. This is true because by definition it equals
(Y (0)−Y (0))(Y (T )−Y (0))
Of course all of this works for F replaced with F̃t ≡ Ft∥F∥p,[0,T ]
, and Y replaced with Ỹ where
Ỹt ≡ Yt∥Y∥q,[0,T ]
. Then in this case it is very convenient because ω (0,T )≤ 2. Then the abovereduces to ∣∣∣∣∫
P
(Ỹ − Ỹ (0)
)dF̃∣∣∣∣≤ 51/p+1/q (2)1/p+1/q
∞
∑r=1
(1r
)1/p+1/q
≡ Ĉpq
Then also, ∣∣∣∣∫P(Y −Y (0))dF
∣∣∣∣≤ Ĉpq ∥Y∥q,[0,T ] ∥F∥p,[0,T ]
Then this implies∣∣∣∣∫P
Y dF∣∣∣∣ ≤ Ĉpq ∥Y∥q,[0,T ] ∥F∥p,[0,T ]+∥Y (0)∥
∞∥FT −F0∥
= Ĉpq ∥Y∥q,[0,T ] ∥F∥p,[0,T ]+∥Y (0)∥∞(∥FT −F0∥p)1/p
≤ Ĉpq ∥Y∥V q([0,T ]) ∥F∥p,[0,T ]+∥Y∥V q([0,T ]) ∥F∥p,[0,T ]
=(Ĉpq +1
)∥Y∥V q([0,T ]) ∥F∥p,[0,T ] ≡Cpq ∥Y∥V q([0,T ]) ∥F∥p,[0,T ]