196 CHAPTER 7. THE DERIVATIVE
then (u,y) ∈U. This has just said that B(x,r)X , the ball taken in X is contained in Uy .This proves the lemma. ■
Or course one could also consider Ux≡{y : (x,y) ∈U} in the same way and concludethis set is open in Y . Also, the generalization to many factors yields the same conclusion.In this case, for x ∈∏
ni=1 Xi, let
∥x∥ ≡max(∥xi∥Xi
: x= (x1, · · · ,xn))
Then a similar argument to the above shows this is a norm on ∏ni=1 Xi. Consider the triangle
inequality.
∥(x1, · · · ,xn)+(y1, · · · ,yn)∥= maxi
(∥xi +yi∥Xi
)≤max
i
(∥xi∥Xi
+∥yi∥Xi
)≤max
i
(∥xi∥Xi
)+max
i
(∥yi∥Xi
)= ∥x∥+∥y∥
Corollary 7.9.2 Let U ⊆∏ni=1 Xi be an open set and let
U(x1,··· ,xi−1,xi+1,··· ,xn) ≡ {x ∈ Fri : (x1, · · · ,xi−1,x,xi+1, · · · ,xn) ∈U} .
Then U(x1,··· ,xi−1,xi+1,··· ,xn) is an open set in Fri .
Proof: Let z ∈U(x1,··· ,xi−1,xi+1,··· ,xn). Then (x1, · · · ,xi−1,z,xi+1, · · · ,xn)≡ x ∈U bydefinition. Therefore, since U is open, there exists r > 0 such that B(x,r)⊆U. It followsthat for B(z,r)Xi
denoting the ball in Xi, it follows that B(z,r)Xi⊆U(x1,··· ,xi−1,xi+1,··· ,xn)
because to say that ∥z−w∥Xi< r is to say that
∥(x1, · · · ,xi−1,z,xi+1, · · · ,xn)− (x1, · · · ,xi−1,w,xi+1, · · · ,xn)∥< r
and so w ∈U(x1,··· ,xi−1,xi+1,··· ,xn). ■Next is a generalization of the partial derivative.
Definition 7.9.3 Let g : U ⊆∏ni=1 Xi→ Y , where U is an open set. Then the map
z→ g (x1, · · · ,xi−1,z,xi+1, · · · ,xn)
is a function from the open set in Xi,
{z : x= (x1, · · · ,xi−1,z,xi+1, · · · ,xn) ∈U}
to Y . When this map is differentiable, its derivative is denoted by Dig (x). To aid in thenotation, for v ∈ Xi, let θ iv ∈∏
ni=1 Xi be the vector (0, · · · ,v, · · · ,0) where the v is in the
ith slot and for v ∈∏ni=1 Xi, let vi denote the entry in the ith slot of v. Thus, by saying
z→ g (x1, · · · ,xi−1,z,xi+1, · · · ,xn)
is differentiable is meant that for v ∈ Xi sufficiently small,
g (x+θ iv)−g (x) = Dig (x)v+o(v) .
Note Dig (x) ∈L (Xi,Y ) .