336 CHAPTER 11. REGULAR MEASURES
Therefore, for Qr ≡mp(h(B(x,r)∩H))
mp(h(B(x,r)))≥ 1|detDh(x)|mp(B(x,r))(1+ε)p
∫B(x,r) gdmp so
1mp (B(0,r))(1+ ε)p
∫B(x,r)
g|detDh(x)|
dmp ≤ Qr
≤ 1mp (B(0,r))(1− ε)p
∫B(x,r)
g|detDh(x)|
dmp
and so for Lebesgue points of g, a.e. x with |detDh(x)| ̸= 0,
1(1+ ε)p ≤
g(x)|detDh(x)|
≤ 1(1− ε)p
Then for such x, 1(1+ε)p
g|detDh(x)| ≤ liminfr→0 Qr ≤ limsupr→0 Qr,≤ 1
(1−ε)pg
|detDh(x)| so,
since ε is arbitrary, limr→0 Qr =g(x)
|detDh(x)| . ■
Lemma 11.9.7 For a.e. x ∈ H,g(x) = |detDh(x)|.
Proof: First considerx such that |det(Dh(x))| ̸= 0. Then by Lemmas 11.9.5 and 11.9.6
limr→0
mp (h(B(x,r)∩H))
mp (B(x,r))= lim
r→0
mp (h(B(x,r)∩H))
mp (h(B(x,r)))mp (h(B(x,r)))
mp (B(x,r))
=g(x)
|detDh(x)||detDh(x)|= g(x)
for a.e. x where |det(Dh(x))| ̸= 0.If |detDh(x)|= 0 then for r small enough,
1mp (B(x,r))
∫B(x,r)
gdmp =mp (h(B(x,r)∩H))
mp (B(x,r))
≤mp (h(x)+Dh(x)B(0,r)+B(0,εr))
mp (B(x,r))=
mp (Dh(x)B(0,r)+B(0,εr))mp (B(x,r))
Now Dh(x)B(0,r) + B(0,εr) has finite diameter and lies in a p− 1 dimensional sub-set. Therefore, from Theorem 11.7.4 on linear mappings, there is an orthogonal matrix Qpreserving all distances such that
|detQ|mp (Dh(x)B(0,r)+B(0,εr)) = mp (QDh(x)B(0,r)+B(0,εr))
where QDh(x)B(0,r) lies in a ball in Rp−1 of some radius r̂ = ∥Dh(x)∥r,. Thus the seton the right side is contained in a cylinder of radius r̂+ εr and height 2rε so its measure isno more than α p−1 (r̂+ rε)p−1 2εr for α p−1 = mp−1 (B(0,1)) . Thus,
1mp (B(x,r))
∫B(x,r)
gdmp ≤(∥Dh(x)∥+1)p
α p−1 (r+ rε)p−1 2εrα prp
= 2(∥Dh(x)∥+1)p α p−1
α p(1+ ε)p−1
ε
Since ε is arbitrary, for every Lebesgue point where |detDh(x)| = 0, it follows g = 0 =|detDh(x)| . ■
Here is the change of variables formula which follows from Lemma 11.9.4 now that ghas been identified.