482 CHAPTER 18. DIFFERENTIAL FORMS

18.4 Lipschitz MapsThis will be based on the approximation with C1 maps. Let r : [a,b]⊆Rk→Rp where r isLipschitz and k ≤ p as before. The idea is to extend the above Stokes theorem to this casewhere r is Lipschitz rather than C1. First extend r as follows. For t ≥ bl and ul ∈ [a,b]l ,let

r (u1, ...,ul−1, t,ul+1, ...,uk)≡ r (u1, ...,ul−1,bl ,ul+1, ...,uk)

and also if t ≤ al and ul ∈ [a,b]l , let

r (u1, ...,ul−1, t,ul+1, ...,uk)≡ r (u1, ...,ul−1,al ,ul+1, ...,uk)

This is done for each l. Then define for h > 0

rh (u)≡(

12h

)k ∫ u1+2h

(b1−a1)(u1−a1)

−2h+u1+2h

(b1−a1)(u1−a1)

· · ·∫ uk+

2h(bk−ak)

(uk−ak)

−2h+uk+2h

(bk−ak)(uk−ak)

r (t)dtk · · ·dt1 (18.7)

Consider those integrals. When u1 = a1 you are integrating over [a1−2h,a1] and whenu1 = b1 you are integrating over [b1,b1 +2h] . Of course it is similar for the other [al ,bl ] .In general, each iterated integral is taken over an interval of length 2h. For example,

u1 +2h

(b1−a1)(u1−a1)−

(−2h+u1 +

2h(b1−a1)

(u1−a1)

)= 2h

Now consider the right end of the lth interval in [a,b] where ul = bl . Then this is describ-ing one of the two faces corresponding to the lth interval. By Fubini’s theorem and theconstruction of the extention of r, 18.7 implies that this equation simplifies to

rh (ul (bl)) =

(1

2h

)k−1 ∫ u1+2h

(b1−a1)(u1−a1)

−2h+u1+2h

(b1−a1)(u1−a1)

· · ·∫ uk+

2h(bk−ak)

(uk−ak)

−2h+uk+2h

(bk−ak)(uk−ak)

·

r (t1, ...,bl , ...tk)dtk · · · d̂tl · · ·dt1

Now by the fundamental theorem of calculus, for i ̸= l,

rhui(ul (bl)) =

(1

2h

)k−2 ∫ u1+2h

(b1−a1)(u1−a1)

−2h+u1+2h

(b1−a1)(u1−a1)

· · ·∫ uk+

2h(bk−ak)

(uk−ak)

−2h+uk+2h

(bk−ak)(uk−ak)

·

r

(t1, ...,ui +

2h(bi−ai)

(ui−a1) , ...bl , ...tk

)1

2h

(1+

2hbi−ai

)−

r

(t1, ...,−2h+ui +

2h(bi−ai)

(ui−ai) , ...bl , ...tk

)12h

(1+

2hbi−ai

dtk · · · d̂ti, · · · , d̂tl · · ·dt1

By the material on Rademacher’s theorem, that integrand is(1+

2hbi−ai

)1

2h

∫ ui+2h

(bi−ai)(ui−ai)

−2h+ui+2h

(bi−ai)(ui−ai)

rui (t1, ..., ti, ...bl , ...tk)dti

482 CHAPTER 18. DIFFERENTIAL FORMS18.4 Lipschitz MapsThis will be based on the approximation with C! maps. Let r : [a,b] CR‘ > R? where r isLipschitz and k < p as before. The idea is to extend the above Stokes theorem to this casewhere r is Lipschitz rather than C!. First extend r as follows. For t > bj and wu; € [a, bj),letT (Uys 2p U1 yf UIE 1 yey Uk) = 0 (U1, 1,1, U4, +5 Uk)and also if t < a; and u; € [a, b],, letTP (U1, +, Uj—1,0, Ul415 ++ Uk) =P (U1, ---, U1, 7, U1, +++, Uk)This is done for each /. Then define for h > 01\* Genser Ute (up —ax)mw=(s) [ Coa) vf ames) r(t)dty---dt, (18.7))2h+uy+ ce ay (uy —ay 2h+ug+ C= 7) (up—ax)Consider those integrals. When wu; = a; you are integrating over [aj — 2h,a;| and whenu, = by you are integrating over [bj ,b; + 2h]. Of course it is similar for the other [a;,b)].In general, each iterated integral is taken over an interval of length 2h. For example,2h2hm+ Gay —a,)— (20h et ~a:)) = 2hNow consider the right end of the /’” interval in [a,b] where u; = b). Then this is describ-ing one of the two faces corresponding to the /’” interval. By Fubini’s theorem and theconstruction of the extention of r, 18.7 implies that this equation simplifies toKV py +24 — (uy —a u, up—a,Cd C9 ee a2h ahrui+ Gy a) (uj —a) . Ut ng Tey (Maa)P(t, .-5D1y et) Ute dt «dtNow by the fundamental theorem of calculus, for i 4 /,k-2 a p28 (pp —g nt tt nar! (uw (bj)) = (=) foe «a 1-41) . pe a ka) .Uj 2h hu + GS a) ll —a)) Aha Gy ny (te ax)2h 1 ahwy Uj + ——V (ui — 41), Di, te) > | 1+ J] -2h 1 2hti,...,—2h ; + ———~ (u; — qj), ...by,...t, ) — (1 .r(n, ) rut a) (uj di), 1; ‘) an ( +)dt,-+-dtj,--- dt ---dtyBy the material on Rademacher’s theorem, that integrand is2h (b; Gj y (ia)Ty; (ty sti, ---D1,---th) Ati( bj — -) nl 2h 2h (4a) u; (C1 i 1 k) i