27.4. CHARACTERISTIC FUNCTIONS AND INDEPENDENCE 745

Lemma 27.4.2 Let Y be a random vector with values in Rp and let f be bounded andmeasurable with respect to the Radon measure λY , and satisfy∫

f (y)eit·ydλY = 0

for all t ∈ Rp. Then f (y) = 0 for λY a.e. y.

Proof: You could write the following for φ ∈ G∫φ (t)

∫f (y)eit·ydλY dt = 0 =

∫f (y)

(∫φ (t)eit·ydt

)dλY

Recall that the inverse Fourier transform maps G onto G . Hence∫

f (y)ψ (y)dλY = 0 forall ψ ∈ G . Thus this is also so for every ψ ∈C∞

0 (Rp)⊇C∞c (Rp) by an obvious application

of the Stone Weierstrass theorem. Let {φ k} be a sequence of functions in C∞c (Rp) which

converges to

sgn( f )≡{

f̄/ | f | if f ̸= 00 if f = 0

pointwise and in L1 (Rp,λY ) , each |φ k| ≤ 2. Then for any ψ ∈C∞0 (Rp) ,

0 =∫

f (y)φ n (y)ψ (y)dλY →∫| f (y)|ψ (y)dλY

Also, the above holds for any ψ ∈Cc (Rp) as can be seen by taking such a ψ and convolvingwith a mollifier. By the Riesz representation theorem, f (y) = 0 λY a.e. (The measureµ (E)≡

∫E | f (y)|dλY equals 0.) ■

Proof of the proposition: If theX j are independent, the formula follows from Lemma27.2.6 and Lemma 27.2.4.

Now suppose the formula holds. Thus ∏nj=1 E

(eit j ·X j

)=∫

Rpn· · ·∫Rp2

∫Rp1

eit1·x1eit2·x2 · · ·eitn·xndλX1dλX2 · · ·dλXn = E(eiP)

=∫Rpn· · ·∫Rp2

∫Rp1

eit1·x1 eit2·x2 · · ·eitn·xndλX1|x2···xndλX2|x3···xn · · ·dλXn . (27.8)

Then from the above Lemma 27.4.2, the following equals 0 for λXn a.e. xn.∫Rpn−1

· · ·∫Rp2

∫Rp1

eit1·x1eit2·x2 · · ·eitn−1·xn−1dλX1dλX2 · · ·dλXn−1−

∫Rpn−1

· · ·∫Rp2

∫Rp1

eit1·x1eit2·x2

· · ·eitn−1·xn−1dλX1|x2···xndλX2|x3···xn · · ·dλXn−1|xn

Let ti = 0 for i = 1,2, · · · ,n−2. Then this implies∫Rpn−1

eitn−1·xn−1dλXn−1 =∫Rpn−1

eitn−1·xn−1dλXn−1|xn

27.4. CHARACTERISTIC FUNCTIONS AND INDEPENDENCE 745Lemma 27.4.2 Let Y be a random vector with values in R? and let f be bounded andmeasurable with respect to the Radon measure Ay, and satisfy| fetary =0for allt € R?. Then f (y) =O fordAy ae. y.Proof: You could write the following for @ € Y[ot [renetraaxar=o= | ry( | o(etrar) aryRecall that the inverse Fourier transform maps ¥ onto ¥. Hence f f (y) w(y)dAy =0 forall y € Y. Thus this is also so for every y € Cp (R?) 2 C® (R”) by an obvious applicationof the Stone Weierstrass theorem. Let {¢,} be a sequence of functions in C2 (R?) whichconverges tosen(/)={ yi Beepointwise and in L! (R?,Ay), each |@,| < 2. Then for any y € Cp (R”),0= [Fw)9,(y)Wy)ddy > [IF @)wy)ddyAlso, the above holds for any y € C, (R?) as can be seen by taking such a y and convolvingwith a mollifier. By the Riesz representation theorem, f(y) =0 Ay a.e. (The measureH(E) = Jr lf (y)|dAy equals 0.)Proof of the proposition: If the X ; are independent, the formula follows from Lemma27.2.6 and Lemma 27.2.4.Now suppose the formula holds. Thus []_, E (e’**/) =[ vf | eft 1 eit2-®2... eltn nd) y drAx,+--dax, = E (e’”)IRpn RP. J RPI= [,, of [, elt ai gitrer...gitv ang] ya dAxy|ay-m,°dAx,,. (27.8)Then from the above Lemma 27.4.2, the following equals 0 for Ax, a.e. dp.[ vf [ elt 1 ltr #2... eltn-1'®n-1d) x dd x,+--dAx,_,—JIRPn-1 R?2 JR?1| of | elt @1 pitr-w2JRPn-1 R?2 JR?1oe. gltn-1'@n-1 seee AYN x ||... IM X5\03--aen dixn—1|8nLet ¢; = 0 for i= 1,2,--- ,n—2. Then this implies| eftnV®nr-Idpix =| eft) x ila,RPn-l RPn-1 ~