746 CHAPTER 27. ANALYTICAL CONSIDERATIONS

By the fact that the characteristic function determines the distribution measure, Theorem27.1.4, it follows that for these xn off a set of λXn measure zero,λXn−1 = λXn−1|xn .Returning to 27.8, one can replace λXn−1|xn with λXn−1 to obtain∫

Rpn· · ·∫Rp2

∫Rp1

eit1·x1eit2·x2 · · ·eitn·xndλX1dλX2 · · ·dλXn−1dλXn

=∫Rpn· · ·∫Rp2

∫Rp1

eit1·x1 eit2·x2 · · ·eitn·xn ·

dλX1|x2···xndλX2|x3···xn · · ·dλXn−1dλXn

Next let tn = 0 and applying the above Lemma 27.4.2 again, this implies that for λXn−1a.e. xn−1, the following equals 0.∫

Rpn−2· · ·∫Rp2

∫Rp1

eit1·x1eit2·x2 · · ·eitn−2·xn−2dλX1dλX2 · · ·dλXn−2−

∫Rpn−2

· · ·∫Rp2

∫Rp1

eit1·x1eit2·x2 · · ·eitn−2·xn−2 ·

dλX1|x2···xndλX2|x3···xn · · ·dλXn−2|xnxn−1

Let ti = 0 for i = 1,2, · · · ,n−3. Then you obtain∫Rpn−2

eitn−2·xn−2dλXn−2 =∫Rpn−2

eitn−2·xn−2dλXn−2|xnxn−1

and so λXn−2 = λXn−2|xnxn−1 for xn−1 off a set of λXn−1 measure zero. Continuing thisway, it follows that

λXn−k = λXn−k|xnxn−1···xn−k+1

for xn−k+1 off a set of λXn−k+1 measure zero. Thus if E is Borel in Rpn−1 ×·· ·×Rp1 ,∫Rpn×···×Rp1

XEdλ (X1···Xn) =

∫Rpn· · ·∫Rp2

∫Rp1

XEdλX1|x2···xndλX2|x3···xn · · ·dλXn−1|xndλXn∫Rpn· · ·∫Rp2

∫Rp1

XEdλX1|x2···xndλX2|x3···xn · · ·dλXn−1dλXn

...

=∫Rpn· · ·∫Rp2

∫Rp1

XEdλX1dλX2 · · ·dλXn

One could achieve this iterated integral in any order by similar arguments to the above. ByDefinition 27.2.2 and the discussion which follows, this implies that the random variablesX i are independent. ■

Here is another proof of the Doob Dynkin lemma based on differentiation theory.

746 CHAPTER 27. ANALYTICAL CONSIDERATIONSBy the fact that the characteristic function determines the distribution measure, Theorem27.1.4, it follows that for these x, off a set of Ax,, measure zero,Ax, , =AxReturning to 27.8, one can replace A x, ||e, With A.x,,_, to obtainn—-12n*| of / elt #1 ltr ®2... eltn'tndy x dix,--dax, dax,IRPn R?2 JR?P1= | oe | / elt 21 elt2'@2 wae eltn'&n .IRPn R?2 JR?1AY x |x. OM X5\03--@, °° AX, dA x,Next let ¢, = 0 and applying the above Lemma 27.4.2 again, this implies that for Ax,_,a.e. £,—1, the following equals 0.i of i elt 1 ltr... eltn2-@n-2g) x dd x,+--dAx,_,—RPn-2 R?2 JR?1| of / elt @1 pita-@2 ||, pitn—2-En-2 ,RPn-2 R2 JRPIAX x \ae..2n AM X5\03--ay o ‘dixn—2|@n8p—1Let t; = 0 fori = 1,2,--- ,n —3. Then you obtainitn—2°@n—2 =_ ity—2°n—2Don e ddx,5 = RPn2 e AX Xan eyand soAx,, =AX, sane, _; for Zn—1 Off a set of Ax,way, it follows that, Measure zero. Continuing thisAXn4 = AX 4-4 | try 1pfor &,—x+1 Off a set of Ax, measure zero. Thus if E is Borel in R?-! x --- x R?!,n—k+1RPn x.» RPI 1 ”im =f RI REAM & | ary. FA X 9\a03--ay °° IAX, jan 4AX,,[ ff KK x |\e,.0,44 Xp |e3--a, °° IA x, dA x,Ren R?2 JR?=| vf Rrdhx dix,---ddx,RPn R?2 JR?1One could achieve this iterated integral in any order by similar arguments to the above. ByDefinition 27.2.2 and the discussion which follows, this implies that the random variablesX ; are independent.Here is another proof of the Doob Dynkin lemma based on differentiation theory.