22.6. EXERCISES 477

(h) z = x21x2 + x2

3, x1 = t1t2,x2 = t1t2t4,x3 = sin(t3). Find ∂ z∂ t1

.

2. Let z = f (y) =(y2

1 + siny2 + tany3)

and

y = g (x)≡

 x1 + x2x2

2 − x1 + x2x2

2 + x1 + sinx2

 .

Find D( f ◦g)(x). Use to write ∂ z∂xi

for i = 1,2.

3. Let z = f (y) =(y2

1 + coty2 + siny3)

and y = g (x) ≡

 x1 + x4 + x3x2

2 − x1 + x2x2

2 + x1 + sinx4

. Find

D( f ◦g)(x). Use to write ∂ z∂xi

for i = 1,2,3,4.

4. Let z = f (y) =(y2

1 + y22 + siny3 + y4

), y = g (x)≡

x1 + x4 + x3x2

2 − x1 + x2x2

2 + x1 + sinx4x4 + x2

. Find the

derivative of the composition D( f ◦g)(x). Use to write ∂ z∂xi

for i = 1,2,3,4.

5. Let

z = f (y) =

(y2

1 + siny2 + tany3y2

1y2 + y3

)

and y = g (x) ≡

 x1 + x2x2

2 − x1 + x2x2

2 + x1 + sinx2

. Find D(f ◦g)(x). Use to write ∂ zk∂xi

for

i = 1,2 and k = 1,2. Recall this will be of the form(

z1x1 z1x2 z1x3z2x1 z2x2 z2x3

).

6. Let z = f (y) =

 y21 + siny2 + tany3

y21y2 + y3

cos(y2

1)+ y3

2y3

 and

y = g (x)≡

 x1 + x4x2

2 − x1 + x3x2

3 + x1 + sinx2

 .

Find D(f ◦g)(x). Use to write ∂ zk∂xi

for i = 1,2,3,4 and k = 1,2,3.

7. Give a version of the chain rule which involves three functions f,g,h.

8. If f :U →V and f−1 : V →U for U,V open sets such that f,f−1 are both differen-tiable, show that

det(Df(f−1 (y)

))det(Df−1 (y)

)= 1

22.6.EXERCISES 477(h) z= XTX) +5, X, = tty, x2 =tytot4,x3 = sin (t3). Find 2.Let z= f(y) = Oi + sin y2 + tany3) andXy +X2y= g(@)=| 3-1 +x2x3 +x) +sinx: 4. az .Find D(f og) (a). Use to write $ for i= 1,2.Xi +X +x3. Letz=f(y)= (vt +coty2 +siny3) and y = g(a) = x5 — x1 +-x9 . Findx5 +x) +sinxyD(fog) (a). Use to write ge for i= 1,2,3,4.Xj +%4+x3x5 —X, +Xx2x3 +X] + sinx4X4 + X2derivative of the composition D(f og) (a). Use to write gz for i= 1,2,3,4.. Find theLet z= f(y) = (yp +y3+siny3 +y4), y = 9 (a)Let2 ._ _ ( yp +siny2 + tany3 )z= =F(y) ( yqy2 + y3Xy +Xx2and y= g(x) = x3 — xX] +x . Find D(fog)(a). Use to write a forx5 +x; +sinx2i= 1,2 and k = 1,2. Recall this will be of the form ( 21a ley ZL3 )Z2x1 22x £2x3yj +siny2 + tany3Let z= f(y) = yiy2 bys andcos (yz) +y3y3xy +%X4y= g(x)= x5 — x1 +3x3 +x] + sinx2Find D(f og) (x). Use to write oe for i= 1,2,3,4 and k = 1,2,3.Give a version of the chain rule which involves three functions f,g,h.If f:U Vand f-':V —U for U,V open sets such that f, f! are both differen-tiable, show thatdet (Df (Ff! (y))) det (Df! (y)) =1