196 CHAPTER 8. POSITIVE LINEAR FUNCTIONALS
where f ∈ Cc (Rp). Thus for such f , L f =∫
f dmp but mp is a complete Borel measurewhich is also regular. One dimensional Lebesgue measure has already been discussed. Iam writing dxik ≡ dm1
(xik
).
Then from Lemma 8.0.3 this functional L and Lσ give the same Borel measure mp.Here σ is the permutation which yields (i1, · · · , ip) . Now let U be an open set. Then fromTheorem 8.1.3, and letting ψn be the increasing sequence of functions in Cc (U) convergingpointwise to XU , we obtain the following from the monotone convergence theorem appliedto the indicated succession of iterated integrals,∫
∞
−∞
· · ·∫
∞
−∞
XU dxpdxp−1 · · ·dx1 = limn→∞
∫∞
−∞
· · ·∫
∞
−∞
ψndxpdxp−1 · · ·dx1
= limn→∞
∫ψndmp =
∫XU dmp
= limn→∞
∫∞
−∞
· · ·∫
∞
−∞
ψndxipdxip−1 · · ·dxi1 =∫
∞
−∞
· · ·∫
∞
−∞
XU dxipdxip−1 · · ·dxi1
This has proved part of the following result.
Lemma 8.4.2 For any E Borel and (i1, · · · , ip) a permutation,∫∞
−∞
· · ·∫
∞
−∞
XEdxipdxip−1 · · ·dxi1 =∫
XEdmp ∗
and all iterated integrals make sense. I am writing dxik for dm1(xik
).
Proof: Let S consist of the Borel sets E such that ∗ holds for E ∩ (−R,R)p. Then Scontains the open sets by what was just argued. The open sets are a π system because theyare closed with respect to finite intersections. Also, S is closed with respect to countabledisjoint unions by an application of the monotone convergence theorem on each iteratedintegral. If E ∈ S , does it follow that EC ∈ S ? First note that each iterated integral inXEC∩(−R,R)p makes sense because the corresponding integrals for XE∩(−R,R)p and X(−R,R)p
make sense and XEC∩(−R,R)p = X(−R,R)p −XE∩(−R,R)p .∫(−R,R)p
dmp =∫
∞
−∞
· · ·∫
∞
−∞
XE∩(−R,R)pdxipdxip−1 · · ·dxi1
+∫
∞
−∞
· · ·∫
∞
−∞
XEC∩(−R,R)pdxipdxip−1 · · ·dxi1
=∫
XE∩(−R,R)pdmp +∫
∞
−∞
· · ·∫
∞
−∞
XEC∩(−R,R)pdxipdxip−1 · · ·dxi1
Therefore, ∫(−R,R)p∩EC
dmp =∫
∞
−∞
· · ·∫
∞
−∞
XEC∩(−R,R)pdxipdxip−1 · · ·dxi1
and so by the lemma on π systems, S consists of the Borel sets because S contains theopen sets and the smallest σ algebra containing the open sets. Thus for any E Borel,∫
∞
−∞
· · ·∫
∞
−∞
X(−R,R)p∩Edxipdxip−1 · · ·dxi1 =∫
X(−R,R)p∩Edmp
Let R→∞ and use the monotone convergence theorem as needed to obtain that the iteratedintegrals all make sense and that the equality is preserved with E in place of (−R,R)p∩E.■