8.1. ELEMENTARY MATRICES 145

Now consider what this does to a column vector.

. . . 01

c1

0. . .





...vi−1

vi

vi+1...

=



...vi−1

cvi

vi+1...

Denote by E (c, i) this elementary matrix which multiplies the ith row of the identity by thenonzero constant, c. Then from what was just discussed and Proposition 5.1.15,

E (c, i)



......

...a(i−1)1 a(i−1)2 · · · a(i−1)p

ai1 ai2 · · · aip

a(i+1)1 a(i+1)2 · · · a(i+1)p...

......

=



......

...a(i−1)1 a(i−1)2 · · · a(i−1)p

cai1 cai2 · · · caip

a(i+1)1 a(i+1)2 · · · a(i+1)p...

......

This proves the following lemma.

Lemma 8.1.6 Let E (c, i) denote the elementary matrix corresponding to the row opera-tion in which the ith row is multiplied by the nonzero constant, c. Thus E (c, i) involvesmultiplying the ith row of the identity matrix by c. Then

E (c, i)A = B

where B is obtained from A by multiplying the ith row of A by c.

Example 8.1.7 Consider this. 1 0 00 5 00 0 1

 a b

c de f

=

 a b5c 5de f

Finally consider the third of these row operations. Denote by E (c× i+ j) the elemen-

tary matrix which replaces the jth row with the jth row added to c times the ith row. In casei < j this will be of the form 

. . . 01

. . .

c 1

0. . .

