146 CHAPTER 8. RANK OF A MATRIX

Now consider what this does to a column vector.

. . . 01

. . .

c 1

0. . .





...vi...

v j...

=



...vi...

cvi + v j...

Now from this and Proposition 5.1.15,

E (c× i+ j)



......

...ai1 ai2 · · · aip...

......

a j1 a j2 · · · a jp...

......



=



......

...ai1 ai2 · · · aip...

......

cai1 +a j1 cai2 +a j2 · · · caip +a jp...

......

The case where i > j is handled similarly. This proves the following lemma.

Lemma 8.1.8 Let E (c× i+ j) denote the elementary matrix obtained from I by replacingthe jth row with c times the ith row added to it. Then

E (c× i+ j)A = B

where B is obtained from A by replacing the jth row of A with itself added to c times the ith

row of A.

Example 8.1.9 Consider the third row operation. 1 0 00 1 02 0 1

 a b

c de f

=

 a bc d

2a+ e 2b+ f

The next theorem is the main result.

Theorem 8.1.10 To perform any of the three row operations on a matrix A, it suffices to dothe row operation on the identity matrix obtaining an elementary matrix E and then take theproduct, EA. Furthermore, if E is an elementary matrix, then there is another elementarymatrix Ê such that EÊ = ÊE = I.