416 CHAPTER 17. INNER PRODUCT SPACES

Then instead of the integral given above, you could write a Riemann sum which approxi-mates it. I will simply write the left Riemann sum. This yields the approximation bk for ak.Assuming f is continuous, the approximation would improve as N→ ∞.

bk =1

N−1

∑j=0

f(

j2π

N

)e−ik( j 2π

N ) 2π

N=

1N

N−1

∑j=0

(e−i 2π

N

)k jy j

where y j is defined to be the value of the function at x j. This is called the discreet Fouriertransform. In terms of matrix multiplication, let ωN = e−i 2π

N . Then

b−(N−1)...

b−1

b0

b1...

bN−1

=

1N



1 (ωN)N−1 · · · (ωN)

(N−1)(N−1)

......

...1 ωN · · · (ωN)

(N−1)

1 1 · · · 1

1 ωN · · · ω(N−1)N

......

...

1 ωN−1N · · · ω

(N−1)(N−1)N



y0

y1...

yN−1



Thus you can find these approximate values by matrix multiplication.

Example 17.6.1 Suppose you have the following table of values for the function f .0 1

π/2 2π −1

3π/2 12π 2

Note that the above only uses the first four values.

In this case, N = 4 and so ωN = e−i(π/2) = −i. Then the approximate Fourier coeffi-cients are given by

b−3

b−2

b−1

b0

b1

b2

b3

=

14



1 i3 i6 i9

1 i2(i2)2 (

i2)3

1 i i2 i3

1 1 1 11 −i −1 i1 (−i)2 (−i)4 (−i)6

1 (−i)3 (−i)6 (−i)9



12−11

