312 CHAPTER 17. THE DERIVATIVE OF A FUNCTION OF MANY VARIABLES

Thus

∂w∂x

= 2u2 (cosu1)xy+(sinu1)ycosxy

= 2(sin(xy))(cos(x2y+ z

))xy

+(sin(x2y+ z

))ycosxy.

Similarly, you can find the other partial derivatives of w in terms of substituting in for u1and u2 in the above. Note

∂w∂x

=∂w∂u1

∂u1

∂x+

∂w∂u2

∂u2

∂x.

In fact, in general if you have w = f (u1,u2) and

g (x,y,z) =

(u1 (x,y,z)u2 (x,y,z)

)

then D( f ◦g)(x,y,z) is of the form

(wu1 wu2

)( u1x u1y u1z

u2x u2y u2z

)=

(wu1ux +wu2u2x wu1uy +wu2u2y wu1uz +wu2u2z

).

Example 17.6.4 Let w = f (u1,u2,u3) = u21 +u3 +u2 and

g (x,y,z) =

 u1

u2

u3

=

 x+2yzx2 + yz2 + x

Find ∂w

∂x and ∂w∂ z .

By the chain rule,

(wx,wy,wz) =(

wu1 wu2 wu3

) u1x u1y u1z

u2x u2y u2z

u3x u3y u3z

=

(wu1u1x +wu2u2x +wu3u3x,wu1u1y +wu2u2y +wu3u3y,

wu1u1z +wu2u2z +wu3u3z)

Note the pattern,

wx = wu1u1x +wu2u2x +wu3u3x,

wy = wu1u1y +wu2u2y +wu3u3y,

wz = wu1u1z +wu2u2z +wu3u3z.

312. CHAPTER 17. THE DERIVATIVE OF A FUNCTION OF MANY VARIABLESThus0owe 2uy (cosu;)xy + (sinu;) ycosxyOx2 (sin (xy)) (cos (x°y +z)) xy+ (sin (x°y +z)) ycosxy.Similarly, you can find the other partial derivatives of w in terms of substituting in for u,and wz in the above. Noteow _ dwouy , dw dusOx Ou, Ox Our Ox’In fact, in general if you have w = f (u,u2) andg (x,y, Z) = ( Uy (x,y, Z)uz (x, y,2)then D(f og) (x,y,z) is of the formUjx Uly UzWu, WuU2x U2y U2z= (rut + Wig Hx Wy, Uy + Way U2y Wn Me +WantrsExample 17.6.4 Let w = f (u1,u2,u3) = ut +u3+u2 anduy x+2yz_ _ 2g (x,y,z) = uz — x+yU3 4xFind gu and oeBy the chain rule,Uix Uly Utz(wr, wy.) = ( Wu, Wu Wu; ) U2x U2y U2z =U3x U3y U3z(Wi, Ux Wy U2x + Wz U3x5 Wu Uy + Wu U2y + Wy3 Uy,Wy Uz + Wy 22 + Wu; U3z)Note the pattern,Wy = Way Ux + Way Ux + Wiz 43x,Wy = Way Uy + Wu Yay + Was 3y >Wr = Wy Uz + Wy l2z + Wy U3z-