17.6. THE CHAIN RULE 313

Therefore,

wx = 2u1 (1)+1(2x)+1(1) = 2(x+2yz)+2x+1 = 4x+4yz+1

andwz = 2u1 (2y)+1(0)+1(2z) = 4(x+2yz)y+2z = 4yx+8y2z+2z.

Of course to find all the partial derivatives at once, you just use the chain rule. Thus youwould get (

wx wy wz

)=

(2u1 1 1

) 1 2z 2y2x 1 01 0 2z

=

(2u1 +2x+1 4u1z+1 4u1y+2z

)=

(4x+4yz+1 4zx+8yz2 +1 4yx+8y2z+2z

)Example 17.6.5 Let f (u1,u2) =

(u2

1 +u2

sin(u2)+u1

)and

g (x1,x2,x3) =

(u1 (x1,x2,x3)

u2 (x1,x2,x3)

)=

(x1x2 + x3

x22 + x1

).

Find D(f ◦g)(x1,x2,x3).

To do this,

Df (u1,u2) =

(2u1 11 cosu2

),

Dg (x1,x2,x3) =

(x2 x1 11 2x2 0

).

Then

Df (g (x1,x2,x3)) =

(2(x1x2 + x3) 1

1 cos(x2

2 + x1) )

and so by the chain rule,

D(f ◦g)(x1,x2,x3)

=

Df(g(x))︷ ︸︸ ︷(2(x1x2 + x3) 1

1 cos(x2

2 + x1) )

Dg(x)︷ ︸︸ ︷(x2 x1 11 2x2 0

)

=

((2x1x2 +2x3)x2 +1 (2x1x2 +2x3)x1 +2x2 2x1x2 +2x3

x2 + cos(x2

2 + x1)

x1 +2x2(cos(x2

2 + x1))

1

)

17.6. THE CHAIN RULE 313Therefore,Wy = 2uy (1) +1 (2x) 4+1(1) = 2 (x4 2yz)+2x4+1=4x4+4yz4+ 1andw, = 2uy (2y) +1 (0) +1 (2z) =4 (x+2yz) y+ 2z = 4yx + 8y?z4 2c.Of course to find all the partial derivatives at once, you just use the chain rule. Thus youwould getWe wy we )1 2z 2yQu i) 2x 1 01 O 2z(= (= (2m) +241 4ujz+1 auiy+2z )= (Ax+4yz+1 4ex+8yz2+1 4yx+8y*c+2z )2Example 17.6.5 Let f (ui,u2) = ( sinus) and2 1g (x14%9,%3) = uy (x1,%2,%3) | _ f x1x2 +43“ U2 (X1,X2,X3) XS +21Find D(f 0g) (x1,%2,3).To do this,2u 1Df (u1,u2) = ( ' )1 cosu2D ( ) X2 XxX] 1X1,X2,X = .G \X1,X2,%3 1 2 0Then2 (x1 x2 + x3) 1I cos (x5 +1)Df (g (x1,%2,%3)) = (and so by the chain rule,D(f 0g) (x1,*2,%3)Df (g(x)) Dg(«)2 (x1x2 +x3) 1 x2 Xx 11 cos (x5 +21) 1 2% O_ (2x1x2 + 2x3) x2 + 1 (2x 1x2 + 2x3) x1 +2x2 2x1x2 + 2x3x2 +008 (x3 +21) x1 + 2x2 (cos (x3 +.x1)) 1