314 CHAPTER 17. THE DERIVATIVE OF A FUNCTION OF MANY VARIABLES
Therefore, in particular,
∂ f1 ◦g∂x1
(x1,x2,x3) = (2x1x2 +2x3)x2 +1,
∂ f2 ◦g∂x3
(x1,x2,x3) = 1,∂ f2 ◦g
∂x2(x1,x2,x3) = x1 +2x2
(cos(x2
2 + x1))
.
etc.
In different notation, let
(z1
z2
)= f (u1,u2) =
(u2
1 +u2
sin(u2)+u1
). Then
∂ z1
∂x1=
∂ z1
∂u1
∂u1
∂x1+
∂ z1
∂u2
∂u2
∂x1
= 2u1x2 +1 = 2(x1x2 + x3)x2 +1.
Example 17.6.6 Let
f (u1,u2,u3) =
z1
z2
z3
=
u21 +u2u3
u21 +u3
2
ln(1+u2
3)
and let
g (x1,x2,x3,x4) =
u1
u2
u3
=
x1 + x22 + sin(x3)+ cos(x4)
x24− x1
x23 + x4
.
Find (f ◦g)′ (x).
Df (u) =
2u1 u3 u2
2u1 3u22 0
0 0 2u3(1+u2
3)
Similarly,
Dg (x) =
1 2x2 cos(x3) −sin(x4)
−1 0 0 2x4
0 0 2x3 1
.
Then by the chain rule, D(f ◦g)(x)=Df (u)Dg (x) where u= g (x) as described above.Thus D(f ◦g)(x) =
2u1 u3 u2
2u1 3u22 0
0 0 2u3(1+u2
3)
1 2x2 cos(x3) −sin(x4)
−1 0 0 2x4
0 0 2x3 1
=
2u1−u3 4u1x2 2u1 cosx3 +2u2x3 −2u1 sinx4 +2u3x4 +u2
2u1−3u22 4u1x2 2u1 cosx3 −2u1 sinx4 +6u2
2x4
0 0 4 u31+u2
3x3 2 u3
1+u23
(17.12)