13.4. SERIES AND SEQUENCES OF LINEAR OPERATORS 339
Then the series converges for each t ∈ R. Also
Φ′ (t) ≡ limh→0
Φ (t+ h)− Φ (t)
h=
∞∑k=1
tk−1Ak
(k − 1)!= A
∞∑k=0
tkAk
k!= AΦ (t)
Also AΦ (t) = Φ (t)A and for all t,Φ (t) Φ (−t) = I so Φ (t)−1
= Φ(−t), Φ (0) = I. (It isunderstood that A0 = I in the above formula.)
Proof: First consider the claim about convergence.
∞∑k=0
∥∥∥∥ tkAk
k!
∥∥∥∥ ≤∞∑k=0
|t|k ∥A∥k
k!= e|t|∥A∥ <∞
so it converges by Lemma 13.4.2.
Φ (t+ h)− Φ (t)
h=
1
h
∞∑k=0
((t+ h)
k − tk)Ak
k!
=1
h
∞∑k=0
(k (t+ θkh)
k−1h)Ak
k!=
∞∑k=1
(t+ θkh)k−1
Ak
(k − 1)!
this by the mean value theorem. Note that the series converges thanks to Lemma 13.4.2.Here θk ∈ (0, 1). Thus∥∥∥∥∥Φ (t+ h)− Φ (t)
h−
∞∑k=1
tk−1Ak
(k − 1)!
∥∥∥∥∥ =
∥∥∥∥∥∥∞∑k=1
((t+ θkh)
k−1 − tk−1)Ak
(k − 1)!
∥∥∥∥∥∥=
∥∥∥∥∥∥∞∑k=1
((k − 1) (t+ τkθkh)
k−2θkh)Ak
(k − 1)!
∥∥∥∥∥∥ = |h|
∥∥∥∥∥∥∞∑k=2
((t+ τkθkh)
k−2θk
)Ak
(k − 2)!
∥∥∥∥∥∥≤ |h|
∞∑k=2
(|t|+ |h|)k−2 ∥A∥k−2
(k − 2)!∥A∥2 = |h| e(|t|+|h|)∥A∥ ∥A∥2
so letting |h| < 1, this is no larger than |h| e(|t|+1)∥A∥ ∥A∥2. Hence the desired limit is valid.It is obvious that AΦ (t) = Φ (t)A. Also the formula shows that
Φ′ (t) = AΦ (t) = Φ (t)A, Φ (0) = I.
Now consider the claim about Φ (−t) . The above computation shows that Φ′ (−t) =AΦ (−t) and so d
dt (Φ (−t)) = −Φ′ (−t) = −AΦ (−t). Now let x, y be two vectors in X.Consider
(Φ (−t) Φ (t)x, y)X
Then this equals (x, y) when t = 0. Take its derivative.
((−Φ′ (−t) Φ (t) + Φ (−t) Φ′ (t))x, y)X= ((−AΦ (−t) Φ (t) + Φ (−t)AΦ (t))x, y)X= (0, y)X = 0