42 CHAPTER 2. LINEAR TRANSFORMATIONS

In terms of pictures of the matrix, you are doingA11 A12 · · · A1n

A21 A22 · · · A2n

......

...

Am1 Am2 · · · Amn



B11 B12 · · · B1p

B21 B22 · · · B2p

......

...

Bn1 Bn2 · · · Bnp

Then as explained above, the jth column is of the form

A11 A12 · · · A1n

A21 A22 · · · A2n

......

...

Am1 Am2 · · · Amn



B1j

B2j

...

Bnj

which is a m× 1 matrix or column vector which equals

A11

A21

...

Am1

B1j +

A12

A22

...

Am2

B2j + · · ·+

A1n

A2n

...

Amn

Bnj .

The ith entry of this m× 1 matrix is

Ai1B1j +Ai2B2j + · · ·+AinBnj =

m∑k=1

AikBkj .

This shows the following definition for matrix multiplication in terms of the ijth entries ofthe product harmonizes with Definition 2.1.3.

This motivates the definition for matrix multiplication which identifies the ijth entriesof the product.

Definition 2.1.8 Let A = (Aij) be an m×n matrix and let B = (Bij) be an n× p matrix.Then AB is an m× p matrix and

(AB)ij =

n∑k=1

AikBkj . (2.12)

Two matrices, A and B are said to be conformable in a particular order if they can bemultiplied in that order. Thus if A is an r × s matrix and B is a s × p then A and B areconformable in the order AB. The above formula for (AB)ij says that it equals the ith row

of A times the jth column of B.

Example 2.1.9 Multiply if possible

 1 2

3 1

2 6

( 2 3 1

7 6 2

).

First check to see if this is possible. It is of the form (3× 2) (2× 3) and since the insidenumbers match, it must be possible to do this and the result should be a 3× 3 matrix. The