1198 CHAPTER 34. GELFAND TRIPLES AND RELATED STUFF
Lemma 34.5.2 Let s < t. Then for u,Y satisfying 34.5.28
⟨Bu(t) ,u(t)⟩−⟨Bu(s) ,u(s)⟩+ ⟨(B(t)−B(s))u(s) ,u(t)⟩
+⟨(B(t)−B(s))u(s) ,u(t)−u(s)⟩= 2∫ t
s⟨Y (r) ,u(t)⟩dr
−⟨B(t)u(t)−B(t)u(s) ,u(t)−u(s)⟩ (34.5.30)
Proof: It follows from the following computations
B(t)u(t)−B(s)u(s) =∫ t
sY (r)dr
and so2∫ t
s⟨Y (r) ,u(t)⟩dr−⟨B(t)u(t)−B(s)u(s) ,u(t)−u(s)⟩
= 2〈∫ t
sY (r)dr,u(t)
〉−⟨B(t)u(t)−B(s)u(s) ,u(t)−u(s)⟩
= 2⟨B(t)u(t)−B(s)u(s) ,u(t)⟩−⟨B(t)u(t)−B(s)u(s) ,u(t)−u(s)⟩
= 2⟨B(t)u(t) ,u(t)⟩−2⟨B(s)u(s) ,u(t)⟩−⟨B(t)u(t) ,u(t)⟩+⟨B(t)u(t) ,u(s)⟩+ ⟨B(s)u(s) ,u(t)⟩−⟨B(s)u(s) ,u(s)⟩
= ⟨B(t)u(t) ,u(t)⟩−⟨B(s)u(s) ,u(s)⟩+[⟨B(t)u(t) ,u(s)⟩−⟨B(s)u(s) ,u(t)⟩]
= ⟨B(t)u(t) ,u(t)⟩−⟨B(s)u(s) ,u(s)⟩+⟨(B(t)−B(s))u(s) ,u(t)⟩
Thus⟨Bu(t) ,u(t)⟩−⟨Bu(s) ,u(s)⟩+ ⟨(B(t)−B(s))u(s) ,u(t)⟩
= 2∫ t
s⟨Y (r) ,u(t)⟩dr−⟨B(t)u(t)−B(s)u(s) ,u(t)−u(s)⟩
Now consider the last term. It equals
⟨B(t)u(t)− (B(s)−B(t)+B(t))u(s) ,u(t)−u(s)⟩
= ⟨B(t)u(t)− ((B(s)−B(t))u(s)+B(t)u(s)) ,u(t)−u(s)⟩
= ⟨B(t)u(t)−B(t)u(s) ,u(t)−u(s)⟩+ ⟨(B(t)−B(s))u(s) ,u(t)−u(s)⟩
It follows that
⟨Bu(t) ,u(t)⟩−⟨Bu(s) ,u(s)⟩+ ⟨(B(t)−B(s))u(s) ,u(t)⟩