1200 CHAPTER 34. GELFAND TRIPLES AND RELATED STUFF

In case p≥ 2 then for C ≥maxs ∥B′ (s)∥L (W,W ′) ,

≤ Cm−1

∑j=0

∫ tkj+1

tkj

∥∥∥ul (τ)∥∥∥

W

∥∥∥urk (τ)−ul

k (τ)∥∥∥

Wdτ

= Cm−1

∑j=0

∫ tkm

0X[

tkj ,t

kj+1

] (τ)∥∥∥ulk (τ)

∥∥∥W

∥∥∥urk (τ)−ul

k (τ)∥∥∥

Wdτ

= C∫ tk

m

0

m−1

∑j=0

X[tkj ,t

kj+1

] (τ)∥∥∥ulk (τ)

∥∥∥W

∥∥∥urk (τ)−ul

k (τ)∥∥∥

Wdτ

= C∫ tk

m

0

∥∥∥ul (τ)∥∥∥

W

∥∥∥urk (τ)−ul

k (τ)∥∥∥

Wdτ

≤ C∥∥∥ul

k

∥∥∥Lp([0,T ],V )

∥∥∥urk (τ)−ul

k (τ)∥∥∥

Lp([0,T ],V )

≤ Ĉ (2)2−k

by 34.5.29. In case p < 2, then from assumption and 34.5.31, the absolute value of the leftside is no larger than

m−1

∑j=0

C(

tkj+1− tk

j

)∥∥∥u(

tkj+1

)−u(

tkj

)∥∥∥W

= Cm−1

∑j=0

∫ tkj+1

tkj

X[tkj ,t

kj+1

] (s)∥∥∥urk (s)−ul

k (s)∥∥∥

W

= C∫ tk

m

0

∥∥∥urk (s)−ul

k (s)∥∥∥

W

which converges to 0 as k→ ∞ thanks to 34.5.29.

Lemma 34.5.4 In the above situation,

supt∈NC⟨Bu(t) ,u(t)⟩+

∫ T

0

⟨B′u,u

⟩ds≤C (∥Y∥K′ ,∥u∥K)

Also, t→ Bu(t) is weakly continuous with values in W ′ on NC where N is a set of measurezero including the set where Bu(t) ̸= B(t)(u(t)).

Proof: From the above formula of Lemma 34.5.2 applied to the kth partition of [0,T ]described above,

⟨Bu(tm) ,u(tm)⟩−⟨Bu0,u0⟩+m−1

∑j=0

⟨(B(t j+1

)−B(t j)

)u(t j) ,u

(t j+1

)⟩

+

∗m−1

∑j=0

⟨(B(t j+1

)−B(t j)

)u(t j) ,u

(t j+1

)−u(t j)

1200 CHAPTER 34. GELFAND TRIPLES AND RELATED STUFFIn case p > 2 then for C > max ||B'(s)|| gay.w) ;m—1— ptk< cy fee Tt) —uh(t )|| azEf rigg sodbelfy eee_ c[* i sy, (2) ak (2), ee) —h @)],_ cf" ul (2) u(t) — uk (2) dtS C |, njoanyyy [Me Hk ) LP ((0,7].V)< €(2)2*by 34.5.29. In case p < 2, then from assumption and 34.5.31, the absolute value of the leftside is no larger than"Oo (4k k k kEC (ea -4) [he (Har) -"(6) yBe lH. ta] 5) (|ef )—Hi()|which converges to 0 as k + ~ thanks to 34.5.29. Jjug (s) — uh (9)WLemma 34.5.4 In the above situation,sup (Bu (t wins [¢ Blu,u)ds <C(\|¥ llxrs{lulle)teNcAlso, t + Bu(t) is weakly continuous with values in W' on N© where N is a set of measurezero including the set where Bu(t) # B(t) (u(t)).Proof: From the above formula of Lemma 34.5.2 applied to the k’” partition of [0,7]described above,m—1(Bu (tm) ,U(tm)) — (Buo, uo) + d ((B (ti41) — B(t;)) u(tj) ,u(tj+1))*+E ( (tj+1) —B(t;)) w (tj), (t741) —u(t;))