34.6. ANOTHER APPROACH 1213

By choosing a subsequence we can use 34.6.48 to obtain

un→ u a.e. and in V (34.6.49)(i∗B̃un

)′→ (i∗Bu)′ a.e. and in V ′.

From 34.6.49,

Re⟨(i∗B̃un

)′(t) ,un (t)⟩ → Re⟨(i∗Bu)′ (t) ,u(t)⟩ a.e. t ∈ [0,T ] (34.6.50)

⟨B′ (t)un (t) ,un (t)⟩ → ⟨B′ (t)u(t) ,u(t)⟩ a.e. t ∈ [0,T ] . (34.6.51)

If g ∈ L∞ (0,T ) ,

limn→∞

∫ T

0g(t)⟨

(i∗B̃un

)′(t) ,un (t)⟩dt = lim

n→∞⟨(i∗B̃un

)′,gun (t)⟩

= ⟨(i∗Bu)′ ,gu⟩=∫ T

0g(t)⟨(i∗Bu)′ (t) ,u(t)⟩dt.

Thus we have the following weak convergence:

Re⟨(i∗B̃un

)′,un⟩⇀ Re⟨(i∗Bu)′ ,u⟩ in L1 (0,T ) .

Similarly,⟨B′un,un⟩⇀ ⟨B′u,u⟩ in L1 (0,T )

It follows from 34.6.47 that

⟨B̃un,un⟩′ (·) converges a.e. and weakly in L1 (0,T ) .

⟨B̃un,un⟩(·) converges a.e. and strongly in L1 (0,T ) to ⟨Bu,u⟩(·) .

Therefore, ⟨B̃un,un⟩′ (·) converges a.e. and weakly in L1 (0,T ) to ⟨Bu,u⟩′ (·) . Since ⟨B̃u,u⟩and ⟨B̃u,u⟩′ are both in L1 (0,T ) , this proves part 1 in the case where v = u. This alsoestablishes formula 2. To get 1 for u ̸= v, apply what was just shown to

⟨B(t)(u(t)+ v(t)) ,u(t)+ v(t)⟩.

Next let t ∈ [0,T ] and use 34.6.47 to write

⟨B̃un,un⟩(t) =

2Re∫ t

−T⟨(i∗B̃un

)′(s) ,un (s)⟩ds−2Re

∫ t

−T⟨B̃′ (s)un (s) ,un (s)⟩ds. (34.6.52)

Using 34.6.49, we let n→ ∞ in 34.6.52 and obtain

⟨B̃u,u⟩(t) = 2Re∫ t

−T⟨(i∗B̃ũ

)′(s) , ũ(s)⟩ds−2Re

∫ t

−T⟨B̃′ (s) ũ(s) , ũ(s)⟩ds. (34.6.53)

Hence from 34.6.46,

|⟨B̃u,u⟩(t) | ≤C[||(i∗B̃ũ

)′ ||V ′[−T,2T ]

||ũ||V[−T,2T ]+ ||ũ||2V[−T,2T ]

]

34.6. ANOTHER APPROACHBy choosing a subsequence we can use 34.6.48 to obtainUn > ua.e. and in Y(i*Bu,)' — (i*Bu)! a.e. and in V’.From 34.6.49,Re((i* Bun)’ (t) ,Un (t)) + Re((i* Bu)’ (t) ,u(t)) ae. t € [0,7](B! (t) un (t) ,Un (t)) > (B’ (t) u(t) ,u(t)) ae. t € [0,7].If g€L”(0,T),lim [ g(t) ((i* Bun)! (t) tm (t))dt¢ = lim ((i* Bun)! gun (t))noo n—00= ((i*Bu)' , gu) -[ g(t) (i Bu)’ (t) ,u(t))dt.Thus we have the following weak convergence:Re((i*Bun)’ un) — Re((i*Bu)’ ,u) in L' (0,7).Similarly,(B' Un, Un) — (B'u,u) in L! (0,T)It follows from 34.6.47 that(Bun, Un)’ (-) converges a.e. and weakly in L' (0,7).(Bun, Un) (-) converges a.e. and strongly in L' (0,7) to (Bu,w) (-).1213(34.6.49)(34.6.50)(34.6.51)Therefore, (Buy, un)’ (-) converges a.e. and weakly in L! (0,7) to (Bu, u)' (-). Since (Bu, u)and (Bu,u)! are both in L' (0,7), this proves part 1 in the case where v = u. This alsoestablishes formula 2. To get 1 for u 4 v, apply what was just shown to(B(t) (u(t) + v(t) w(t) + v(t).Next let ¢ € [0,7] and use 34.6.47 to write(Bun, Un) (t) =t t2Re / ((i*Bu)' (s) ,utp (s))ds —2Re / (B! (s) un (8) sun (s))ds.—T —TUsing 34.6.49, we let n > © in 34.6.52 and obtaint(Bu,u) (t) =2Re | ((i*Ba)'(s),@(s))ds—2Re | (B' (s) ii(s) ,i(s))ds.—THence from 34.6.46,\(Buu) (0) | <I] PBA) Ivy, Mhily, pan + Ul, an(34.6.52)(34.6.53)