1214 CHAPTER 34. GELFAND TRIPLES AND RELATED STUFF

≤C[∥Lu∥2

V ′[0,T ]

+∥u∥2V[0,T ]

]≤C||u||2X . (34.6.54)

This verifies 3 in the case u = v. To obtain the general case,

|⟨Bu,v⟩(t)| ≤ ⟨Bu,u⟩1/2 (t)⟨Bv,v⟩1/2 (t)≤C||u||X ||v||X .

To verify 4, use 34.6.47 to write for t ∈ [0,T ] and I = [−T,2T ] ,∣∣⟨B̃un (t)− B̃um (t) ,un (t)−um (t)⟩∣∣

≤ 2∣∣∣∣∫ 2T

−T⟨(i∗B̃(un−um)

)′(s) ,un (s)−um (s)⟩ds

∣∣∣∣+∫ 2T

−T

∣∣⟨B̃′ (s)(un (s)−um (s)) ,un (s)−um (s)⟩∣∣ds≤ (34.6.55)

C[∥∥∥(i∗B̃un

)′− (i∗B̃um)′∥∥∥

V ′I||un−um||VI

+ ||un−um||2WI

]≡ Enm.

Then from 34.6.48, limn,m→∞ Enm = 0 and so, for t ∈ [0,T ] ,∣∣⟨B̃un (t)− B̃um (t) ,w⟩∣∣≤ E1/2

nm ⟨B(t)w,w⟩1/2 ≤CE1/2nm ||w||W .

It follows that B̃un (·) is uniformly Cauchy in the space of continuous functions C (0,T ;W ′)and so it converges to z ∈C (0,T ;W ′) . But B̃un converges in L2 (0,T ;W ′) to Bu(·) . There-fore B(t)u(t) = z(t) a.e. Letting Bu(·) = z(·) , this shows 4. Formula 5 follows from 3 andthe following argument.

|⟨Bu(t) ,w⟩| ≤ ⟨Bu,u⟩1/2 (t)⟨Bw,w⟩1/2 ≤C ||u||X ||w||W .

Assertion 6 follows easily from the first five parts. It remains to get 7.

Re⟨Ku,u⟩ =∫ T

0Re⟨Lu,u⟩dt + ⟨Bu,u⟩(0)

=∫ T

0

12[⟨Bu,u⟩′ (t)+ ⟨B′ (t)u(t) ,u(t)⟩

]dt + ⟨Bu,u⟩(0)

=12⟨Bu,u⟩(T )+ 1

2⟨Bu,u⟩(0)+ 1

2

∫ T

0⟨B′ (t)u(t) ,u(t)⟩dt

It only remains to verify the last assertion. Let ψn be increasing and piecewise linearsuch that ψn (t) = 1 for t ≥ 2/n and equals 0 on [0,1/n]. Then clearly ψnu→ u in V . Also

(B(ψnu))′ = ψ′nBu+ψn (Bu)′

The latter term converges to (Bu)′ in V ′. Now consider the first term.∫ T

0

∥∥ψ′nBu∥∥p′

V ′ dt ≤∫ 2/n

0n∥∥∥∥∫ t

0(Bu)′ ds

∥∥∥∥p′

dt

≤ n∫ 2/n

0t p′−1

∫ t

0

∥∥(Bu)′∥∥p′

V ′ dsdt ≤∫ 2/n

0

∥∥(Bu)′∥∥p′

V ′ ds1p′(2/n)p′ n

Since p′ > 1, this converges to 0.

1214 CHAPTER 34. GELFAND TRIPLES AND RELATED STUFFSCI l[Luly + leon | SCllelle- (34.6.54)This verifies 3 in the case u = v. To obtain the general case,|(Bu,v) (1) < (Bu, uw)? (1) (Bv,v)"/? (1) < C|lullx||vllx.To verify 4, use 34.6.47 to write for t € [0,7] and J = [—T,2T],| (Bun (t) — Bum (t) ,un (t) — um (t))|/ "(iB (un — tm))’ (8) ttn (5) — tm (8) ds—T<2oT+ [ |B) un(s)—um(5))stn(9) —um(9))|d5 4.6.55)|Then from 34.6.48, limy moo Enm = 0 and so, for t € [0,7],eB. \! eB. Yr 2] _(Buy) — (Bum) lle — nly a — nl = Enm.| (Bun (¢) — Bum (t) ,w)| < Enh (B(t)w,w)"? <CEnh |lWllyyIt follows that Bu, (-) is uniformly Cauchy in the space of continuous functions C (0,7; W’)and so it converges to z € C(0,7;W’). But Bu, converges in L? (0,7;W’) to Bu(-). There-fore B(t) u(t) = z(t) a.e. Letting Bu (-) = z(-), this shows 4. Formula 5 follows from 3 andthe following argument.|(Bu (t) ,w)| < (Bu,u)"/? (1) (Bw,w)"/? <C|lully [hollyAssertion 6 follows easily from the first five parts. It remains to get 7.TRe(Ku,u) = [ Re(Lu, u)dt + (Bu, u) (0)[2 [(Bu,u)' (t) + (B’ (t) u(t) ,w(t))] dt + (Bu, u) (0)= 5 (Bu, u) (T)+5( Bu, u) 043 [fe ,Uu(t))dtIt only remains to verify the last assertion. Let y,, be increasing and piecewise linearsuch that y,, (t) = 1 fort > 2/n and equals 0 on [0,1/n]. Then clearly y,u — win Y. Also(B(y,u))' = wi Bu+ w,, (Bu)’The latter term converges to (Bu)’ in Y’. Now consider the first term.[lyisullfiars [Pn2/n ry t , p' 2/n<n [|| Buy! frdsde< | |\(Bu)' fp 40 0Since p’ > 1, this converges to0. Jp!t(Bu)'ds|| dt01 !dsr (2/n)? n