1222 CHAPTER 34. GELFAND TRIPLES AND RELATED STUFF

for all n ̸= m and the norm refers to Lp ([a,b] ;W ). Let

a = t0 < t1 < · · ·< tk = b, ti− ti−1 = (b−a)/k.

Now define

un (t)≡k

∑i=1

uniX[ti−1,ti) (t) , uni ≡1

ti− ti−1

∫ ti

ti−1

un (s)ds.

The idea is to show that un approximates un well and then to argue that a subsequence ofthe {un} is a Cauchy sequence yielding a contradiction to 34.7.60.

Therefore,

un (t)−un (t) =k

∑i=1

un (t)X[ti−1,ti) (t)−k

∑i=1

uniX[ti−1,ti) (t)

=k

∑i=1

1ti− ti−1

∫ ti

ti−1

un (t)dsX[ti−1,ti) (t)−k

∑i=1

1ti− ti−1

∫ ti

ti−1

un (s)dsX[ti−1,ti) (t)

=k

∑i=1

1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))dsX[ti−1,ti) (t) .

It follows from Jensen’s inequality that

||un (t)−un (t)||pW

=k

∑i=1

∣∣∣∣∣∣∣∣ 1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds∣∣∣∣∣∣∣∣p

WX[ti−1,ti) (t)

And so ∫ T

0||un (t)−un (t)||pW dt =

k

∑i=1

∫ ti

ti−1

∣∣∣∣∣∣∣∣ 1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds∣∣∣∣∣∣∣∣p

Wdt

≤k

∑i=1

∫ ti

ti−1

ε

∥∥∥∥ 1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds∥∥∥∥p

Edt

+Cε

k

∑i=1

∫ ti

ti−1

∥∥∥∥ 1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds∥∥∥∥p

Xdt (34.7.61)

Consider the second of these. It equals

k

∑i=1

∫ ti

ti−1

∥∥∥∥ 1ti− ti−1

∫ ti

ti−1

∫ t

su′n (τ)dτds

∥∥∥∥p

Xdt

This is no larger than

≤Cε

k

∑i=1

∫ ti

ti−1

(1

ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτds)p

dt

1222 CHAPTER 34. GELFAND TRIPLES AND RELATED STUFFfor all n ¢ m and the norm refers to L? ([a,b] ;W). Leta=to<t <--+<t=b, t-t_ = (b—a) /k.Now defineUn (t) =1 “iTin, Bj t), Un, = / Un (S) ds.[ti iti) ( ) i ti —ti-1 Jtj_)talleThe idea is to show that 7, approximates u, well and then to argue that a subsequence ofthe {wi} is a Cauchy sequence yielding a contradiction to 34.7.60.Therefore,k kUn (t) — Un (t) = Yun (t) Bis) () - yu Biss) (t)i=l i=lk 1 t; k tjerat Oe io ere wl ty (s) 45 Fin, .4) (0)= Lia 7 _ (un (t) — un (8)) ds 2iy, 4) (t)-i=1 ti}It follows from Jensen’s inequality that[un (t) = tn (0) |vk 1 tj Pp= Vi; (un (t) un (s))ds|} Zig sy ()i=1 || 4-1 I WwAnd sor p ke pti tj Ppn (ft) — Uy (t t= n(t) —Un t[len 0) iin Iv rf ae [unt uaiodvas dkK pt; 1 tj Pp< € A Un (t) —Un(s))ds|} dt7 ay ti —ti-1 ti] ( ( ) ( ) Etj ti P1, Li — | (Un (t) —Uun (s)) ds] dt (34.7.61)i=174i —F-1 JH) xConsider the second of these. It equalstj— | pa t)dtdsti —t- 1 Jtj_| Ysti>)t-1aThis is no larger thank t;sc) | i)Yl Gaallu, (4 ijyaeas) dt