34.7. SOME IMBEDDING THEOREMS 1223

=Cε

k

∑i=1

∫ ti

ti−1

(∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτ

)p

dt

=Cε

k

∑i=1

((ti− ti−1)

1/p∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτ

)p

Since p≥ 1,

≤ Cε

(k

∑i=1

(ti− ti−1)1/p∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτ

)p

≤ Cε (b−a)k

(k

∑i=1

∫ ti

ti−1

∥∥u′n (τ)∥∥

X dτ

)p

=Cε (b−a)

k

(∥∥u′n∥∥

L1([a,b],X)

)p<

η p

10p

if k is chosen large enough. Now consider the first in 34.7.61. By Jensen’s inequality

k

∑i=1

∫ ti

ti−1

ε

∥∥∥∥ 1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds∥∥∥∥p

Edt ≤

k

∑i=1

∫ ti

ti−1

ε1

ti− ti−1

∫ ti

ti−1

∥un (t)−un (s)∥pE dsdt

≤ ε2p−1k

∑i=1

1ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

(∥un (t)∥p +∥un (s)∥p)dsdt

= 2ε2p−1k

∑i=1

∫ ti

ti−1

(∥un (t)∥p)dt = ε (2)(2p−1)∥un∥Lp([a,b],E) ≤Mε

Now pick ε sufficiently small that Mε < η p

10p and then k large enough that the second termin 34.7.61 is also less than η p/10p. Then it will follow that

∥ūn−un∥Lp([a,b],W ) <

(2η p

10p

)1/p

= 21/p η

10≤ η

5

Thus k is fixed and un at a step function with k steps having values in E. Now usecompactness of the embedding of E into W to obtain a subsequence such that {un} isCauchy in Lp ([a,b] ;W ) and use this to contradict 34.7.60. The details follow.

Suppose un (t) = ∑ki=1 un

i X[ti−1,ti) (t) . Thus

||un (t)||E =k

∑i=1||un

i ||E X[ti−1,ti) (t)

and so

R≥∫ b

a||un (t)||pE dt =

Tk

k

∑i=1||un

i ||pE

34.7. SOME IMBEDDING THEOREMS 1223tj P=o |’ ! |e (lyr) dti-1 i-]_ - _ )l/p any °=CeY (Onan? [lelai-1. fi P(Sonn [letraPHatt)nal (yfCe (b—a) n= SER (uhllesdeaian)” < ibnif k is chosen large enough. Now consider the first in 34.7.61. By Jensen’s inequalitySince p > 1,IAIAk Pdt <tjyliei=1 74-1 Ek t; 1 tjyf e—— Phun (e) un (8) asai=174i-1 tj —Ci-1 Stk pty_ 1 tj tja Dees / / ({lun (t) ||? + |lun ()||?) dsati=1 tj —t-] tj, Yj]—— | (un(t)—un(s))asti —ti-1 ti}IAkort;2e2" 1 | (le OI) dt = € (2) (2°) Italo) <MEi=l 7 tiNow pick € sufficiently small that Me < se and then k large enough that the second termin 34.7.61 is also less than 7? /10?. Then it will follow that_ 2n? vp i/p— Dp TAN = 10 <|| Zn Un||7>((a,b],W) < (=) 2 10 —Thus k is fixed and @, at a step function with k steps having values in E. Now usecompactness of the embedding of E into W to obtain a subsequence such that {@,} isCauchy in L? ([a,b]; W) and use this to contradict 34.7.60. The details follow.Suppose Zi, (t) = VE, ul! 7 Rina; (t)- Thusn|3||2in (t le= lel Kiya) (0)and so4 zz Pp r : n\|PRe | \imn(Olibae = Y iesp