1402 CHAPTER 42. MAXIMAL MONOTONE OPERATORS, HILBERT SPACE

which is a contradiction.Define

D(L)≡{

x ∈ L2 (0,T ;H) : such that

x(t) = x0 +∫ t

0x′ (s)ds where x′ ∈ L2 (0,T ;H)

}(42.7.47)

and for x ∈ D(L) ,Lx≡ x′.

Then L is maximal monotone. To see this, consider the equation

λx′+ x = z, x(0) = x0

It clearly has a solution so λL+ I is onto. In fact, the solution is

x = e−tλ x0 +

e−tλ

∫ t

0e

sz(s)ds

Also,

(Lx−Ly,x− y)L2(0,T ;H) =∫ T

0

((x′− y′

),x− y

)H dt

=∫ T

0

(x′ (t)− y′ (t) ,

∫ t

0x′ (s)− y′ (s)ds

)dt

=12

∫ T

0

ddt

(∣∣∣∣∫ t

0x′ (s)− y′ (s)ds

∣∣∣∣2)

dt

=

∣∣∣∣∫ T

0x′ (s)− y′ (s)ds

∣∣∣∣2H≥ 0

Thus we have the following lemma.

Lemma 42.7.3 L is maximal monotone and if z ∈ L2 (0,T ;H) , then Jλ z is given by

Jλ [z] (t)≡ (I +λL)−1 ([z]) (t) = e−tλ x0 +

e−tλ

∫ t

0e

sz(s)ds. (42.7.48)

The main theorem is the following.

Theorem 42.7.4 Let x0 ∈ D≡ D(φ) . Then L+∂Φ is maximal monotone so there exists aunique solution to

Lx+ x+∂Φ(x) ∋ f (42.7.49)

for every f ∈ L2 (0,T ;H). Thus there exists x ∈ L2 (0,T ;H) such that

x′ ∈ L2 (0,T ;H) ,x(0) = x0 ∈ D(φ) ,

andx′+ x+∂Φ(x) ∋ f , x(0) = x0

1402 CHAPTER 42. MAXIMAL MONOTONE OPERATORS, HILBERT SPACEwhich is a contradiction. ffDefineD(L) = {xe L? (0,T;H) : such thattx(t) =x0 +f x’ (s)ds where x’ € L? (0, T;H)} (42.7.47)0and for x € D(L),Lx=x’.Then L is maximal monotone. To see this, consider the equationAx’ +x =z, x(0) =xIt clearly has a solution so AL +1 is onto. In fact, the solution is=t 1 = f? 4,x=etxo+ cet [el z(s)dsA 0Also, r(Lx — Ly,x—y)120,7:4) =| ((x’—y’) .X—y) , dt[ (v (t)—y’ ©, [x (s)—y! ()ds) dt~ 5 [¥()-¥' as aTd0 dt \\JoT[ x’ (s) —y' (s)dsThus we have the following lemma.Lemma 42.7.3 L is maximal monotone and if z € L? (0,T;H) , then Jy,z is given by- 1a stJy [zg (t) = I+AL)! ([g) (t) = er xy + ze | e%*z(s)ds. (42.7.48)0The main theorem is the following.Theorem 42.7.4 Let x) € D=D(). Then L+ 0® is maximal monotone so there exists aunique solution toLx+x+0®(x) 3 f (42.7.49)for every f € L? (0,T;H). Thus there exists x € L? (0,T;H) such thatx €L’ (0,T;H),x(0) =x € D(o),andx’ +x+d®(x) 5 f, x(0) =x