42.7. AN EVOLUTION INCLUSION 1403

Proof: This is from Theorem 42.6.2. Since x0 ∈ D, it follows that φ (x0)< ∞.Let z ∈ D(Φ) , the effective domain of Φ. Then

∫ T0 φ (z(t))dt < ∞, so by convexity of

φ and 42.7.48,

φ (Jλ z(t))≤ e−tλ φ (x0)+

e−tλ

∫ t

0e

sλ φ (z(s))ds. (42.7.50)

ThenΦ(Jλ z) =∫ T

0φ (Jλ z(t))dt ≤ φ (x0)λ +

∫ T

0

∫ t

0e−(t−s)/λ

φ (z(s))dsdt

≤ λφ (x0)+1λ

∫ T

0φ (z(s))

∫ T

se−(t−s)/λ dtds

≤ λφ (x0)+

(∫ T

0φ (z(s))ds

)1λ

∫∞

0e−t/λ dt

= φ (x0)λ +∫ T

0φ (z(s))ds

= φ (x0)λ +Φ(z)

The conditions of Theorem 42.6.2 are satisfied. This proves L+∂Φ is maximal mono-tone on L2 (0,T ;H) and consequently there exists a unique solution to the differential in-clusion of the theorem.

Then the main result is the following.

Theorem 42.7.5 Let f ∈ L2 (0,T ;H) and x0 ∈ D. Let φ be as described above, a lowersemicontinuous convex proper function defined on H. Then there exists a unique solutionx ∈ L2 (0,T ;H) ,x′ ∈ L2 (0,T ;H) , to

x′+∂Φ(x) ∋ f in L2 (0,T ;H) , x(0) = x0

This satisfies the pointwise condition

x′ (t)+∂φ (x(t)) ∋ f (t) for a.e. t, x(0) = x0

Proof: From Theorem 42.7.4, there exists a unique solution to

x′v +∂Φ(xv)+ xv ∋ f + v in L2 (0,T ;H) , xv (0) = x0

whenever v ∈ L2 (0,T ;H). Then a simple argument based on fundamental theorem of cal-culus implies that for a.e. t,

x′v (t)+∂φ (xv (t))+ xv (t) ∋ f (t)+ v(t)

Then for given v,u one can act on xv (t)− xu (t) and integrate. This yields

12|xv (t)− xu (t)|2H +

∫ t

0|xv− xu|2 ds≤

∫ t

0|v(s)−u(s)|2H ds

It follows that a sufficiently high power of the mapping u→ xu is a contraction map onL2 (0,T ;H) and so there exists a unique fixed point v in L2 (0,T ;H). Thus xv = v and so

v′+∂Φ(v) ∋ f in L2 (0,T ;H) , v(0) = x0

42.7. AN EVOLUTION INCLUSION 1403Proof: This is from Theorem 42.6.2. Since xo € D, it follows that @ (x9) < °°.Let z € D(®), the effective domain of ®. Then So (z(t)) dt < ©, so by convexity of@ and 42.7.48,$ (Jnz(t)) <e% (x0) + ze# [ete (z(s))ds. (42.7.50)Then®(J,z) =[orctoarsotoas [5 [et (2(5))dsat<h0 (0) +5 [ oles) [et aras20 (x0) + ( [ve ((s))d) 1 PewhaT= o(x0)A+ fo ((s))as= 9(x0)A + ®(z)The conditions of Theorem 42.6.2 are satisfied. This proves L+ 0® is maximal mono-tone on L* (0,T;H) and consequently there exists a unique solution to the differential in-clusion of the theorem. JThen the main result is the following.Theorem 42.7.5 Let f € L?(0,T7;H) and xo € D. Let @ be as described above, a lowersemicontinuous convex proper function defined on H. Then there exists a unique solutionx€L’(0,7;H),x’ €L? (0,T;H), tox’ +0®(x) 5 f in L’ (0,T;H), x(0) = x0IAThis satisfies the pointwise conditionx(t) +00 (x(t)) 3 f(t) for ae. t, x(0) =xProof: From Theorem 42.7.4, there exists a unique solution tox, +0®(x,) +4, 3 f+vin L? (0,7;H), x (0) = x0whenever v € L*(0,7;H). Then a simple argument based on fundamental theorem of cal-culus implies that for a.e. f,X(t) +99 (x (1) Fy (1) 3 F(O+V (0)Then for given v,u one can act on x, (tf) — x, (t) and integrate. This yields1 t t5b) —au(lie+ ff bv —aul?as< f \v(s)—u(s)liasIt follows that a sufficiently high power of the mapping u — x, is a contraction map onL? (0,T;H) and so there exists a unique fixed point v in L* (0,T;H). Thus x, = v and sov +0®(v) > f in’ (0,T;H), v(0)=xo Wl