43.3. THE IMPLICIT CASE 1433

which requires easily that

Bgp =k

∑i=1

⟨Bgp,ei

⟩Bei,

the above holding for all k large enough. It follows that for any x ∈ span({gk}∞

k=1) , (finitelinear combination of vectors in {gk}∞

k=1)

Bx =∞

∑i=1⟨Bx,ei⟩Bei (43.3.12)

because for all k large enough,

Bx =k

∑i=1⟨Bx,ei⟩Bei

Also note that for such x ∈ span({gk}∞

k=1) ,

⟨Bx,x⟩ =

⟨k

∑i=1⟨Bx,ei⟩Bei,x

⟩=

k

∑i=1⟨Bx,ei⟩⟨Bx,ei⟩

=k

∑i=1|⟨Bx,ei⟩|2 =

∑i=1|⟨Bx,ei⟩|2

Now for x arbitrary, let xk→ x in W where xk ∈ span({gk}∞

k=1) . Then by Fatou’s lemma,

∑i=1|⟨Bx,ei⟩|2 ≤ lim inf

k→∞

∑i=1|⟨Bxk,ei⟩|2

= lim infk→∞

⟨Bxk,xk⟩= ⟨Bx,x⟩ (43.3.13)

≤ ∥Bx∥W ′ ∥x∥W ≤ ∥B∥∥x∥2W

Thus the series on the left converges. Then also, from the above inequality,∣∣∣∣∣⟨

q

∑i=p⟨Bx,ei⟩Bei,y

⟩∣∣∣∣∣≤ q

∑i=p|⟨Bx,ei⟩| |⟨Bei,y⟩|

(q

∑i=p|⟨Bx,ei⟩|2

)1/2( q

∑i=p|⟨By,ei⟩|2

)1/2

(q

∑i=p|⟨Bx,ei⟩|2

)1/2(∞

∑i=1|⟨By,ei⟩|2

)1/2

43.3. THE IMPLICIT CASEwhich requires easily thatkBgp = Y (Bgp,ei) Bei,i=l1433the above holding for all k large enough. It follows that for any x € span ({gx};_,), (finitelinear combination of vectors in {gx };_ 1)Bx = y (Bx, e;) Be;i=]because for all k large enough,MinBx= ) (Bx, e;) Be;1Also note that for such x € span ({gx}¢_1);k k(Bx,x) = yi ( (Bx, e;) Be;,x “)- y( (Bx, e;) (Bx, e;)i=1 i=1—|(Bx, ei) |”Ms|(Bx, ei)? =1 iIM=1(43.3.12)Now for x arbitrary, let x, — x in W where x; € span ({g,};_,). Then by Fatou’s lemma,y \(Bx,e;)|? << lim inf y | (Bxx,e;) |i=l kes i= lim inf (Bxg,x,) = (Bx,x)k-4002S ||Bx\lwe lll < {Bll lelThus the series on the left converges. Then also, from the above inequality,(s (Bx, “) Bryi=pq< ¥|(Bx.e%)||(Ber.y)i=pq 27 1/2(x (240) : oo)i=p i=pIAAaNMs&e=Ne=Na o™~NMs2&Ne=N(43.3.13)