1434 CHAPTER 43. INTERPOLATION IN BANACH SPACE

By 43.3.13,

(q

∑i=p|⟨Bx,ei⟩|2

)1/2(∥B∥∥y∥2

W

)1/2

(q

∑i=p|⟨Bx,ei⟩|2

)1/2

∥B∥1/2 ∥y∥W

It follows that∞

∑i=1⟨Bx,ei⟩Bei (43.3.14)

converges in W ′ because it was just shown that∥∥∥∥∥ q

∑i=p⟨Bx,ei⟩Bei

∥∥∥∥∥W ′≤

(q

∑i=p|⟨Bx,ei⟩|2

)1/2

∥B∥1/2

and it was shown above that ∑∞i=1 |⟨Bx,ei⟩|2 < ∞, so the partial sums of the series 43.3.14

are a Cauchy sequence in W ′. Also, the above estimate shows that for ∥y∥= 1,∣∣∣∣∣⟨

∑i=1⟨Bx,ei⟩Bei,y

⟩∣∣∣∣∣ ≤(

∑i=1|⟨By,ei⟩|2

)1/2(∞

∑i=1|⟨Bx,ei⟩|2

)1/2

(∞

∑i=1|⟨Bx,ei⟩|2

)1/2

∥B∥1/2

and so ∥∥∥∥∥ ∞

∑i=1⟨Bx,ei⟩Bei

∥∥∥∥∥W ′≤

(∞

∑i=1|⟨Bx,ei⟩|2

)1/2

∥B∥1/2 (43.3.15)

Now for x arbitrary, let xk ∈ span({

g j}∞

j=1

)and xk→ x in W. Then for a fixed k large

enough, ∥∥∥∥∥Bx−∞

∑i=1⟨Bx,ei⟩Bei

∥∥∥∥∥≤ ∥Bx−Bxk∥

+

∥∥∥∥∥Bxk−∞

∑i=1⟨Bxk,ei⟩Bei

∥∥∥∥∥+∥∥∥∥∥ ∞

∑i=1⟨Bxk,ei⟩Bei−

∑i=1⟨Bx,ei⟩Bei

∥∥∥∥∥≤ ε +

∥∥∥∥∥ ∞

∑i=1⟨B(xk− x) ,ei⟩Bei

∥∥∥∥∥ ,the term ∥∥∥∥∥Bxk−

∑i=1⟨Bxk,ei⟩Bei

∥∥∥∥∥

1434 CHAPTER 43. INTERPOLATION IN BANACH SPACEBy 43.3.13,1/2< (Zl s«a) (ili). 1/2< (X00?) WI" lvli=pIt follows thatMs:(Bx, e;) Be; (43.3.14)i=1converges in W’ because it was just shown thatq 1/2< (ienen?] |i"i=pand it was shown above that Y°?_, |(Bx,e;)|* < ce, so the partial sums of the series 43.3.14are a Cauchy sequence in W’. Also, the above estimate shows that for ||y|| = 1,qy (Bx, e;) Be;i=pw'wo so 1/27. 1/2(Eas a) < [Ele *) (Ela)i=l i=] i=lwo 1/2< (Ele-a) Bi"i=land sooo oo 1/2Y (Bx,e;) Be;|| << ( ¥|(Bx,e:)? } |B”? (43.3.15)i=l w! i=lNow for x arbitrary, let x; € span ({ g yea) and x, —> x in W. Then for a fixed k largeenough,Bx -h (Bx, e;) Be;|| < ||Bx — Bxx||j=l+ || Bx; — y (Bxg, e;) Be;|| + y (Bxx, e;) Be; — y? (Bx, e;) Be;i=l i=l i=l<e+ y (B (xz —x) ,e;) Be;l| ,i=]the term