43.8. DUALITY AND INTERPOLATION 1461

This proves the first part of the lemma.Claim: With this definition of the norm in 43.8.54, the operator norm of (a′0,a

′1) ∈

(A0×A1)′ = A′0×A′1 is ∣∣∣∣(a′0,a′1)∣∣∣∣(A0×A1)

′ =∣∣∣∣a′0∣∣∣∣A′0 + t

∣∣∣∣a′1∣∣∣∣A′1 . (43.8.55)

Proof of the claim:∣∣(a′0,a′1)(a0,a1)

∣∣ ≤ ∣∣∣∣a′0∣∣∣∣ ||a0||+ ||a′1|| ||a1|| . Now suppose that||a0||= max

(||a0|| , t−1 ||a1||

). Then this is no larger than(∣∣∣∣a′0∣∣∣∣+ t

∣∣∣∣a′1∣∣∣∣) ||a0||=(∣∣∣∣a′0∣∣∣∣+ t

∣∣∣∣a′1∣∣∣∣)max(||a0|| , t−1 ||a1||

).

The other case is that t−1 ||a1||= max(||a0|| , t−1 ||a1||

). In this case,∣∣(a′0,a′1)(a0,a1)

∣∣ ≤ ∣∣∣∣a′0∣∣∣∣ ||a0||+∣∣∣∣a′1∣∣∣∣ ||a1||

≤∣∣∣∣a′0∣∣∣∣ t−1 ||a1||+

∣∣∣∣a′1∣∣∣∣ ||a1||=

(∣∣∣∣a′0∣∣∣∣+ t∣∣∣∣a′1∣∣∣∣) t−1 ||a1||

=(∣∣∣∣a′0∣∣∣∣+ t

∣∣∣∣a′1∣∣∣∣)max(||a0|| , t−1 ||a1||

).

This shows∣∣∣∣(a′0,a′1)∣∣∣∣(A0×A1)

′ ≤(∣∣∣∣a′0∣∣∣∣+ t ||a′1||

). Is equality achieved? Let a0n and a1n

be points of A0 and A1 respectively such that ||a0n|| , ||a1n|| ≤ 1 and limn→∞ a′i (ain) = ||a′i|| .Then (

a′0,a′1)(a0n, ta1n)→

∣∣∣∣a′0∣∣∣∣+ t∣∣∣∣a′1∣∣∣∣

and also, ||(a0n, ta1n)||A0×A1= max

(||a0n|| , t−1t ||a1n||A1

)≤ 1. Therefore, equality is in-

deed achieved and this proves the claim.Consider 43.8.52. Take a′ ∈ A′0 +A′1 = (A0∩A1)

′ and let

E ≡ {(a,a) ∈ A0×A1 : a ∈ A0∩A1} .

Now define a linear map, λ on E as before.

λ ((a,a))≡ a′ (a) .

If a′ = ã′0 + ã′1,

|λ ((a,a))| ≤∣∣∣∣ã′0∣∣∣∣A′0 ||a||A0

+∣∣∣∣ã′1∣∣∣∣A′1 ||a||A1

=∣∣∣∣ã′0∣∣∣∣A′0 ||a||A0

+ t∣∣∣∣ã′1∣∣∣∣A′1 t−1 ||a||A1

≤(∣∣∣∣ã′0∣∣∣∣+ t

∣∣∣∣ã′1∣∣∣∣) ||(a,a)||A0×A1

so λ is continuous on the subspace, E of A0×A1 and

||λ ||E ′ ≤∣∣∣∣ã′0∣∣∣∣+ t

∣∣∣∣ã′1∣∣∣∣ . (43.8.56)

By the Hahn Banach theorem, there exists an extension of λ defined on all of A0×A1 withthe same norm. Thus, from 43.8.55, there exists (a′0,a

′1)∈ (A0×A1)

′ which is an extensionof λ such that ∣∣∣∣(a′0,a′1)∣∣∣∣(A0×A1)

′ =∣∣∣∣a′0∣∣∣∣A′0 + t

∣∣∣∣a′1∣∣∣∣A′1 = ||λ ||E ′

43.8. DUALITY AND INTERPOLATION 1461This proves the first part of the lemma.Claim: With this definition of the norm in 43.8.54, the operator norm of (ag,a/,) €(Ao x Ai)’ = Ag x A} is(2.4) apa = Lela + Ue a 43.8.5)Proof of the claim: |(a,@/) (40,41) | < |]a6|| ||aol| + |la/ || ||ai||. Now suppose that||@o|| = max (||ao||,¢~' |Jai||) . Then this is no larger than([|26|| + #|J@1|]) aol] = (]Jao|| +# [fat ||) max (Vlao|] 7°" [lau -The other case is that ¢~! ||a,|| = max (||ao|| ,¢7' ||a1||) - In this case,{||| [aol] + |ai {| IleIJao|[e* laull + [lai] lau({ao}| +# |} ||) Vleull({a6|| +#|Jat ||) max (|lao|] {lau -|(a9,41) (ao,a1)|I IA IAThis shows (40541) [Tag ayy! < (|]ao|| +e] a ||) . Is equality achieved? Let apn and ai,be points of Ao and A respectively such that ||aon|| , ||@in|| < 1 and limy_,.0 a} (ain) = ||aj||.Then(a,a',) (don; tain) > ||20| | +t||aj||and also, ||(@on,t@in)||4)x4, = Max (Ilaonl tlt \ainlla, ) <1. Therefore, equality is in-deed achieved and this proves the claim.Consider 43.8.52. Take a’ € Aj +A), = (AoMA1)’ and letE= {(a,a) € Ao X Aj: a € AgNA}}.Now define a linear map, A on E as before.A ((a,a)) =a'(a).Ifa =a +a,1A ((a,a))] << fy Hallg + 1A LL Ulla,= [lel Hallay +2 1&7 Hell< (laol| +e |||) N@adllay xa,so A is continuous on the subspace, E of Ao x A, andAller < [ao] | +2||@1||- (43.8.56)By the Hahn Banach theorem, there exists an extension of A defined on all of Ag x A, withthe same norm. Thus, from 43.8.55, there exists (aj,a,) € (Ao x A1)’ which is an extensionof A such thata = AlleII (40541) II cagxary’ = leollay, + let |