1462 CHAPTER 43. INTERPOLATION IN BANACH SPACE

and for all a ∈ A0∩A1,

a′0 (a)+a′1 (a) = λ ((a,a)) = a′ (a) .

It follows that a′0 +a′1 = a′ in (A0∩A1)′. Therefore, from 43.8.56,

||λ ||E ′ ≤ inf{∣∣∣∣ã′0∣∣∣∣A0

+ t∣∣∣∣ã′1∣∣∣∣A1

: a′ = ã′0 + ã′1}≡ K

(t,a′)

(43.8.57)

≤∣∣∣∣a′0∣∣∣∣A′0 + t

∣∣∣∣a′1∣∣∣∣A′1 = ||λ ||E ′ ≡ supa∈A0∩A1

|a′ (a)|J (t−1,a)

(43.8.58)

because on E, J(t−1,a

)= ||(a,a)||A0×A1

which proves 43.8.52.To obtain 43.8.53 in the case that Ai is reflexive, apply 43.8.52 to the case where A′′i

plays the role of Ai in 43.8.52. Thus, for a′′ ∈ A′′0 +A′′1 ,

K(t,a′′

)= sup

a′∈A′0∩A′1

|a′′ (a′)|J (t−1,a′)

.

Now a′′ = a′′1 + a′′0 = η1a1 +η0a0 where η i is the map from Ai to A′′i which is onto andpreserves norms, given by ηa(a′)≡ a′ (a) . Therefore, letting a1 +a0 = a

K (t,a) = K(t,a′′

)= sup

a′∈A′0∩A′1

|a′′ (a′)|J (t−1,a′)

= supa′∈A′0∩A′1

|(η1a1 +η0a0)(a′)|J (t−1,a′)

= supa′∈A′0∩A′1

|(a′ (a1 +a0))|J (t−1,a′)

and so

K (t,a) = supa′∈A′0∩A′1

|a′ (a)|J (t−1,a′)

Changing t→ t−1,K(t−1,a

)J(t,a′)≥∣∣a′ (a)∣∣ .

which proves the lemma.Consider (A0,A1)

′θ ,q .

Definition 43.8.2 Let q≥ 1. Then λθ ,q will denote the sequences, {α i}∞

i=−∞such that

∑i=−∞

(|α i|2−iθ

)q< ∞.

For α ∈ λθ ,q,

||α||λ

θ ,q ≡

(∞

∑i=−∞

(|α i|2−iθ

)q)1/q

.

Thus α ∈ λθ ,q means

{α i2−iθ

}∈ lq.

1462 CHAPTER 43. INTERPOLATION IN BANACH SPACEand for all a € AgNAj,dy (a) +4) (a) =A ((a,a)) =a' (a).It follows that aj +a’, =a’ in (AgN A )'. Therefore, from 43.8.56,Aller < inf { ||@l|,, +1||aj\|,, 24° = ay +a, } =K(t,a’) (43.8.57)<_ | lao]|a’ (a)|»ttilai||,, = ||Al|-,= sup ———~ (43.8.58)tellally, = lle = sn fOr1because on E, J (t~',a) = ||(4,4)||4,.4, Which proves 43.8.52.To obtain 43.8.53 in the case that A; is reflexive, apply 43.8.52 to the case where A?plays the role of A; in 43.8.52. Thus, for a” € Aj +A/,a (a’)|K(t,a") = sup Je @)( ) dean J(t—!,a’)Now a” = ai +a) = 1,41 + Noo where 77; is the map from A; to A’ which is onto andpreserves norms, given by na(a’) =a’ (a). Therefore, letting aj +ay =ala" (a’)|K(t,a) = K(t,a")= sup ———~ea) aealnal J (t-1,a')= ap [rant noe) (a), Malar an)a EAnnAl J(t7!,a’) aleEAhnal J(t7!,a’)and so ;K(t,a)= sup la’ (a)|aealnal J (t-1,a')Changing t > 17!,K (t~',a)J(t,d) > la’ (a)| .which proves the lemma.Consider (Ao,A1 og .coDefinition 43.8.2 Let g > 1. Then 194 will denote the sequences, {0;} such thati=—coooy (|ail2-”)" <o.j=—0oFor ae ae,loll ,o0 = ( ye (i2r")")ji=—ooThus a € A°* means { aj2~!°} Ely.