43.8. DUALITY AND INTERPOLATION 1467

Since ε is arbitrary, it follows that whenever, α ∈ λθ ,q,α i ≥ 0,

∑i

2−iK(2i,a′,A′1,A

′0)

α i ≤∣∣∣∣a′∣∣∣∣

(A0,A1)′θ ,q,J

Cθ ||α||λ θ ,q .

By Lemma 43.8.3,{

K(2i,a′,A′1,A

′0)}∈ λ

1−θ ,q′ and∣∣∣∣{K(2i,a′,A′1,A

′0)}∣∣∣∣

λ1−θ ,q′ ≤

∣∣∣∣a′∣∣∣∣(A0,A1)

′θ ,q,J

Cθ .

Therefore, (1

ln2

∫∞

0

(K(t,a′,A′1,A

′0)

t−(1−θ))q′ dt

t

)1/q′

=

(∑

i

1ln2

∫ 2i+1

2i

(K(t,a′,A′1,A

′0)

t−(1−θ))q′ dt

t

)1/q′

(∑

i

(2−i(1−θ)K

(2i,a′,A′1,A

′0))q′

)1/q′

≤∣∣∣∣a′∣∣∣∣

(A0,A1)′θ ,q,J

Cθ .

Thus ∣∣∣∣a′∣∣∣∣(A′1,A′0)1−θ ,q′

≡∣∣∣∣∣∣t−(1−θ)K

(t,a′,A′1,A

′0)∣∣∣∣∣∣

Lq′(0,∞, dtt )≤C

∣∣∣∣a′∣∣∣∣(A0,A1)

′θ ,q,J

which shows that (A0,A1)′θ ,q,J ⊆ (A′1,A

′0)1−θ ,q′ with the inclusion map continuous. This

proves the lemma.

Lemma 43.8.5 If Ai is reflexive for i = 0,1 and if A0∩A1 is dense in Ai, then(A′1,A

′0)

1−θ ,q′,J ⊆ (A0,A1)′θ ,q

and the inclusion map is continuous.

Proof: Let a′ ∈ (A′1,A′0)1−θ ,q′,J . Thus, there exists u∗ bounded on compact subsets of

(0,∞) and measurable with values in A0∩A1 and

a′ =∫

0u∗ (t)

dtt, (43.8.66)

∫∞

0

(t−(1−θ)J (t,u∗ (t))

)q′ dtt< ∞.

Then

a′ =∞

∑i=−∞

∫ 2i+1

2iu∗ (t)

dtt≡

∑i=−∞

a′i

43.8. DUALITY AND INTERPOLATION 1467Since € is arbitrary, it follows that whenever, a@ € dod, a; > 0,Le 'K (2',a',A},A0) 1 < |Ja"|| (4,419; Yo gag 0 | lla 04 -By Lemma 43.8.3, {K (2',a',A‘,Ao) } € yi-od andI {K (2.4, At Ao) Fyre Sel ay args C-Therefore,=| = 1 qr) (= ora va(asf ( (t,a’,A),Ao)t ;"( y 1/q'_ rat at\,—(1-@) 7 dt~ (Ei in2 (K (r.4',A1.A0)4 ) ")d I/q< [Ee voces)S ja ‘NI (A0-A1)9 garThus[Uday SL PK 441-45) gay SC losinwhich shows that (A0,A1)o. ga & (Ai ,A0) 10. iq With the inclusion map continuous. Thisproves the lemma.Lemma 43.8.5 /f A; is reflexive for i= 0,1 and if Ag NA, is dense in Aj, then/ /(Ai,A0) -6,q' J = C (Ao,A1)o 4and the inclusion map is continuous.Proof: Let a’ € (Ai,Ap); 9 4/,,- Thus, there exists u* bounded on compact subsets of(0,0°) and measurable with values in Ag A, and* dta! = [ Ww (1), (43.8.6)0Then