1466 CHAPTER 43. INTERPOLATION IN BANACH SPACE
= ∑i
[2−(i−1)θ J
(2i,bi
)α i
J (2i,bi) ln2
]q
ln2
=C∑i
(2−iθ |α i|
)q< ∞ (43.8.64)
and so ||a∞||θ ,q,J < ∞. Now for a′ as above, a′ ∈ (A0,A1)′θ ,q,J ⊆ (A0 +A1)
′ , and so sincethe sum for a∞ converges in A0 +A1, we have
a′ (a∞) = ∑i
J(2i,bi
)−1α ia′ (bi) .
Therefore,
a′ (a∞) ≥ ∑i
[K(2−i,a′
)− ε min
(1,2−i)]
α i
= ∑i
K(2−i,a′
)α i−∑
iε min
(1,2−i)
α i
= ∑i
K(2−i,a′
)α i−O(ε) (43.8.65)
The reason for this is that α ∈ λθ ,q so
{α i2−iθ
}∈ lq. Therefore,
∑i
ε min(1,2−i)
α i = ε
{∞
∑i=0
2−iα i +
−1
∑i=−∞
α i
}
= ε
{∞
∑i=0
2−iθ 2(θ−1)iα i +
−1
∑i=−∞
α i2−iθ 2iθ
}
≤ ε
(
∑i
∣∣∣α i2−iθ∣∣∣q)1/q(
∞
∑i=0
(2(θ−1)i
)q′)1/q′
+
(∑
i
∣∣∣α i2−iθ∣∣∣q)1/q(
∞
∑i=0
(2θ i)q′)1/q′
<Cε
Also |a′ (a∞)| ≤ ||a′||(A0,A1)′θ ,q,J||a∞||(A0,A1)θ ,q,J
.Now from the definition of K,
K(2−i,a′,A′0,A
′1)= 2−iK
(2i,a′,A′1,A
′0)
and so from 43.8.65
∑i
2−iK(2i,a′,A′1,A
′0)
α i−O(ε) ≤ a′ (a∞)
≤∣∣∣∣a′∣∣∣∣
(A0,A1)′θ ,q,J
Cθ ||α||λ θ ,q .