43.8. DUALITY AND INTERPOLATION 1465

Now ∣∣∣∣∣∣∣∣∣∣∣∣ bi2iθ

max(||bi||A0

,2i ||bi||A1

)∣∣∣∣∣∣∣∣∣∣∣∣A0+A1

≤{

2iθ if i < 02−i(1−θ) if i≥ 0

. (43.8.63)

This is fairly routine to verify. Consider the case where i≥ 0. Then∣∣∣∣∣∣∣∣∣∣∣∣ bi2iθ

max(||bi||A0

,2i ||bi||A1

)∣∣∣∣∣∣∣∣∣∣∣∣A0+A1

∣∣∣∣∣∣∣∣∣∣ bi2iθ

2i ||bi||A1

∣∣∣∣∣∣∣∣∣∣A0+A1

≤ 2−i(1−θ)

because ||bi||A1≥ ||bi||A0+A1

. Therefore,

M

∑i=0

∣∣∣∣∣∣∣∣∣∣∣∣ bi2iθ

max(||bi||A0

,2i ||bi||A1

)2−iθα i

∣∣∣∣∣∣∣∣∣∣∣∣A0+A1

M

∑i=0

2−i(1−θ)2−iθα i ≤

(∞

∑i=0

2−i(1−θ)q′)1/q′(

∑i=0

2−iqθα

qi

)1/q

< ∞

and similarly,0

∑i=−∞

∣∣∣∣∣∣∣∣∣∣∣∣ bi2iθ

max(||bi||A0

,2i ||bi||A1

)2−iθα i

∣∣∣∣∣∣∣∣∣∣∣∣A0+A1

converges. Therefore, a∞ makes sense in A0 +A1 and also from 43.8.63, we see that{||bi||A0+A1

2iθ

J (2i,bi)

}∈ λ

(1−θ)q′

Now letu(t)≡ α ibi

J (2i,bi) ln2on [2i−1,2i).

Then ∫∞

0u(t)

dtt

= ∑i

∫ 2i

2i−1

α ibi

J (2i,bi) ln2dtt

= ∑i

α ibi

J (2i,bi)= a∞.

Also ∫∞

0

(t−θ J (t,u(t))

)q dtt≤∑

i

∫ 2i

2i−1

(2(1−i)θ J

(2i,u

(2i−1))) dt

t

≤∑i

[2−(i−1)θ J

(2i,u

(2i−1))]q

ln2

43.8. DUALITY AND INTERPOLATION 1465Now98 iO srbj { 2’ ifi <0 (43.8.63): —i(1-6) ; i> .max ([bil|4, -2'I[Billa,) ze E20This is fairly routine to verify. Consider the case where i > 0. ThenAg+A1bj2'? bj2"° 9-i(1-8)max (bila, -2'|[Billa,) 2Nbillas Nagabecause ||b;||4, > ||Dilla,+a,- Therefore,M 9i0Pi? 2°? a; <Bh} max ((Ibillag 2'lblla,) TyM Wd 7. 1/qyo" i(1— 9)9- 18 & < < (p> i(1—0)q yi 2 af <0i=0 i=0and similarly,i] max (([billag 2'lllan) Hy caconverges. Therefore, a. makes sense in Ag + A, and also from 43.8.63, we see thatidJ (2',b;)Now let b_ QD; i-1 4it)= ——_— 22").u(e) J (2!,b;) In2 on [20,')Then°° dt dtt)— =[05 EL en yin2 t= y Odi = 4~J(2',bi))Also[ (: F(t y FE [0 (2° P87(2 Lu(2'))) 4ve N07 (2 ‘.u(2-1))|"n2L