44.2. TRACE AND INTERPOLATION SPACES 1481

It is routine to verify from 44.2.33 that

w(m) (t) = (m−1)!(−1)m u( 1

t

)tm . (44.2.35)

For example, consider the case where m = 2.(∫∞

t

(1− t

τ

)u(

)dτ

τ

)′′=

(0+

∫∞

t

(−1

τ

)u(

)dτ

τ

)′=

1t2 u(

1t

).

Also from 44.2.33, it follows that trace(w) = a. It remains to verify w ∈ V m. From44.2.35, (∫

0

(tθ+m−1

∣∣∣∣∣∣w(m) (t)∣∣∣∣∣∣

A1

)p dtt

)1/p

=

Cm

(∫∞

0

(tθ−1

∣∣∣∣∣∣∣∣u(1t

)∣∣∣∣∣∣∣∣A1

)pdtt

)1/p

=Cm

(∫∞

0

(t1−θ ||u(t)||A1

)p dtt

)1/p

≤Cm

(∫∞

0

(t−θ J (t,u(t))

)p dtt

)1/p

< ∞. (44.2.36)

It remains to consider(∫

0

(tθ ||w(t)||A0

)pdtt

)1/p. From 44.2.34,

(∫∞

0

(tθ ||w(t)||A0

)p dtt

)1/p

=

(∫∞

0

(tθ

∣∣∣∣∣∣∣∣∫ 1

0(1− τ)m−1 u

t

) dτ

τ

∣∣∣∣∣∣∣∣A0

)pdtt

)1/p

=

(∫∞

0

(t−θ

∣∣∣∣∣∣∣∣∫ 1

0(1− τ)m−1 u(τt)

τ

∣∣∣∣∣∣∣∣A0

)pdtt

)1/p

≤∫ 1

0

(∫∞

0

(t−θ (1− τ)m−1 ||u(τt)||A0

)p dtt

)1/p dτ

τ

=∫ 1

θ (1− τ)m−1(∫

0

(s−θ ||u(s)||A0

)p dss

)1/p dτ

τ

=

(∫ 1

θ−1 (1− τ)m−1 dτ

)(∫∞

0

(s−θ ||u(s)||A0

)p dss

)1/p

≤C(∫

0

(s−θ ||u(s)||A0

)p dss

)1/p

44.2. TRACE AND INTERPOLATION SPACES 1481It is routine to verify from 44.2.33 thatw) (t) = (m—1)!(—1)” u(r) (44.2.35)For example, consider the case where m = 2.a t 1\ dt\" of | 1\ dt\’(Po-MeG)Y = LE}t T Tt) T t T tT) T1 1Also from 44.2.33, it follows that trace (w) = a. It remains to verify w € V”. From44,.2.35,co P 1/p(Forster )8)"-0 A) tP 1/p L/p“ft 6-1 1 dt _ [ 1-6 pdtcn | ¢ (3 a) Tr) aoe Et ieeolia ysoo 1/p<Cn (/ (u(y)! *) <0, (44.2.36)P 4\1/PIt remains to consider (ie (8 ||w (t)| lio) ) . From 44.2.34,WwtdtTyayAo) #< [ (/ (rear wie) )[ (1-7)! (f (ims) @)_ (fe (1 )""'ar) (f (Piel) 8)<C (f (5° m“s)llg)” .[a-2m wenJO