1480 CHAPTER 44. TRACE SPACES

≤∫

0

(∫∞

0

((tθ+m−1

sm

)|φ (s)|

∣∣∣∣∣∣u(m)( t

s

)∣∣∣∣∣∣A1

)p dtt

)1/pdss

≤∫

0

|φ (s)|sm

(∫∞

0

(tθ+m−1

∣∣∣∣∣∣u(m)( t

s

)∣∣∣∣∣∣A1

)p dtt

)1/p dss

=∫

0

|φ (s)|sm sθ+m−1

(∫∞

0

θ+m−1∣∣∣∣∣∣u(m) (τ)

∣∣∣∣∣∣A1

)p dτ

τ

)1/p dss

=C(∫

0

θ+m−1∣∣∣∣∣∣u(m) (τ)

∣∣∣∣∣∣A1

)p dτ

τ

)1/p

. (44.2.28)

Now from the estimates on the two terms in 44.2.26 found in 44.2.27 and 44.2.28, and thesimple estimate,

2max(α,β )≥ α +β ,

it follows

||a||θ ,p,J (44.2.29)

≤ C max

((∫∞

0

θ ||u(τ)||A0

)p dτ

τ

)1/p

(44.2.30)

,

(∫∞

0

θ+m−1∣∣∣∣∣∣u(m) (τ)

∣∣∣∣∣∣A1

)p dτ

τ

)1/p)

(44.2.31)

which shows that after taking the infimum over all u whose trace is a, it follows a ∈(A0,A1)θ ,p,J .

||a||θ ,p,J ≤C ||a||T m (44.2.32)

Thus T m (A0,A1,θ , p)⊆ (A0,A1)θ ,p,J .Is (A0,A1)θ ,p,J ⊆ T m (A0,A1,θ , p)? Let a ∈ (A0,A1)θ ,p,J . There exists u having values

in A0∩A1 and such that

a =∫

0u(t)

dtt=∫

0u(

1t

)dtt,

in A0 +A1 such that∫∞

0

(t−θ J (t,u(t))

)pdt < ∞, where J (t,a) = max

(||a||A0

, t ||a||A1

).

Then let

w(t)≡∫

t

(1− t

τ

)m−1u(

)dτ

τ= (44.2.33)

∫ 1/t

0(1− st)m−1 u(s)

dss

=∫ 1

0(1− τ)m−1 u

t

) dτ

τ. (44.2.34)

1480 CHAPTER 44. TRACE SPACES££ (£ (22) I,"=f P(e, 8_ [ OS oem (f Gaus Jum |, ) =) asae (/ Gam um (2)| .) 2) a (4.2.28)TNow from the estimates on the two terms in 44.2.26 found in 44.2.27 and 44.2.28, and thesimple estimate,2max (,B) > a+B,it followslalle.pv (44.2.29)oo d \/p< cman ((/ (=°lle(lln) =) (44.2.30)oo P \/p( [ Ga ) *) ) (44.2.31)0 Ay Twhich shows that after taking the infimum over all u whose trace is a, it follows a €(Ao, A1)o.pa .ul) (2)|lle py SC llallrm (44.2.32)Thus 7” (Ao,A1,9,p) Cc (Ao, A1)@ ps:Is (Ao,A1)op,7 CT” (Ao,A1,8,p)? Let a € (Ao,A1)9,,,,- There exists u having valuesin Ag MA, and such that° dt ° 1\ dta= | u(y = [ u(7) 4.0 t 0 t tin Ag + A, such thatcoy P[ (7 (t,u(t))) "dt < os, where J (t,a) = max (\lall,, .¢[lalla,)-w(t) =[ (1-2)"«(3) (4.2.33)i aay tn = [ray ta(F) eneThen let