44.2. TRACE AND INTERPOLATION SPACES 1479

You can see the same pattern will take place for other values of m.Now

||a||θ ,p,J ≤

(∫∞

0

(t−θ J

(t,v(

1t

)))p dtt

)1/p

≤Cp

{∫∞

0

[(t−θ

∣∣∣∣∣∣∣∣v(1t

)∣∣∣∣∣∣∣∣A0

)+

(t1−θ

∣∣∣∣∣∣∣∣v(1t

)∣∣∣∣∣∣∣∣A1

)]pdtt

}1/p

≤Cp

(∫

0

(t−θ

∣∣∣∣∣∣∣∣v(1t

)∣∣∣∣∣∣∣∣A0

)pdtt

)1/p

+

(∫∞

0

(t1−θ

∣∣∣∣∣∣∣∣v(1t

)∣∣∣∣∣∣∣∣A1

)pdtt

)1/p . (44.2.26)

The first term equals (∫∞

0

(t−θ

∣∣∣∣∣∣∣∣v(1t

)∣∣∣∣∣∣∣∣A0

)pdtt

)1/p

=

(∫∞

0

(tθ ||v(t)||A0

)p dtt

)1/p

=

(∫∞

0

(tθ

∣∣∣∣∣∣∣∣∫ ∞

0sm

φ(m) (s)u

( ts

) dss

∣∣∣∣∣∣∣∣A0

)pdtt

)1/p

≤∫

0

(∫∞

0

(tθ sm

∣∣∣φ (m) (s)∣∣∣ ∣∣∣∣∣∣u( t

s

)∣∣∣∣∣∣A0

)p dtt

)1/p dss

≤∫

0sm∣∣∣φ (m) (s)

∣∣∣(∫ ∞

0

(tθ

∣∣∣∣∣∣u( ts

)∣∣∣∣∣∣A0

)p dtt

)1/p dss

=∫

0sθ+m

∣∣∣φ (m) (s)∣∣∣ ds

s

(∫∞

0

θ ||u(τ)||A0

)p dτ

τ

)1/p

=C(∫

0

θ ||u(τ)||A0

)p dτ

τ

)1/p

. (44.2.27)

The second term equals(∫∞

0

(t1−θ

∣∣∣∣∣∣∣∣v(1t

)∣∣∣∣∣∣∣∣A1

)pdtt

)1/p

=

(∫∞

0

(tθ−1 ||v(t)||A1

)p dtt

)1/p

=

(∫∞

0

(tθ−1

∣∣∣∣∣∣∣∣ 1(m−1)!

∫∞

0φ (s)

tm

sm u(m)( t

s

) dss

∣∣∣∣∣∣∣∣A1

)pdtt

)1/p

44.2. TRACE AND INTERPOLATION SPACES 1479You can see the same pattern will take place for other values of m.ow allo <( (-%u(r»(4)) ey"654 £ |(r*|le()I], Je (ele) .) a)I,) 2)ey sais; 1 at /Pt/\\4,) ¢oo 1/p_ 6 P dt= (f (lirolln)’ *)P \/p[ si” ~ ) at0 S/ S Ao t‘\|,) ¢ '? dsThe first term equalsys<[rpmol(L a f il) t)= [stn lom sirens “y"co d 1/pa (=° lulls.) ) . (44.2.27)(2 JY eermmf ou (4,4)a|>The second term equalsUr ("“(rel