1486 CHAPTER 45. TRACES OF SOBOLEV SPACES

Using the repeated index summation convention to save space, we obtain that in terms ofweak derivatives,

Rg,n(x′,xn

)=

∫Rn−1

[ψ (xn) f

(y′,ψ (xn)

)−∫

ψ(xn)

0(ψ f ),n

(y′, t)

dt]·[

φ ,k

(x′−y′

xn

)(yk− xk

xnn

)+φ

(x′−y′

xn

)(1−n)

xnn

]dy′

=∫Rn−1

[ψ (xn) f

(x′− xnz′,ψ (xn)

)−∫

ψ(xn)

0(ψ f ),n

(x′− xnz′, t

)dt]·[

φ ,k(z′)(yk− xk

xnn

)zk +φ

(z′) (1−n)

xnn

]xn

ndz′

and so ∣∣Rg,n(x′,xn

)∣∣ ≤ C (φ)

∣∣∣∣∫B(0,1)

[ψ (xn) f

(x′− xnz′,ψ (xn)

)−∫

ψ(xn)

0(ψ f ),n

(x′− xnz′, t

)dt]∣∣∣∣

≤ C (φ)

xn−1n

{∫B(0,xn)

∣∣ψ (xn) f(x′+y′,ψ (xn)

)∣∣dy′

+∫

B(0,xn)

∫ψ(xn)

0

∣∣∣(ψ f ),n(x′+y′, t

)∣∣∣dtdy′}

Therefore,(∫∞

0

∫Rn−1

∣∣Rg,n(x′,xn

)∣∣p dx′dxn

)1/p

C (φ)

(∫∞

0

∫Rn−1

(1

xn−1n

∫B(0,xn)

∣∣ψ (xn) f(x′+y′,ψ (xn)

)∣∣dy′)p

dx′dxn

)1/p

+C (φ)

(∫∞

0

∫Rn−1

(1

xn−1n

∫B(0,xn)

∫ψ(xn)

0

∣∣∣(ψ f ),n(x′+y′, t

)∣∣∣dtdy′)p

dx′dxn

)1/p

(45.2.3)Consider the first term on the right. We change variables, letting y′ = z′xn. Then this termbecomes

C (φ)

(∫ 1

0

∫Rn−1

(∫B(0,1)

∣∣ψ (xn) f(x′+ xnz′,ψ (xn)

)∣∣dz′)p

dx′dxn

)1/p

≤C (φ)∫

B(0,1)

(∫ 1

0

∫Rn−1

∣∣ψ (xn) f(x′+ xnz′,ψ (xn)

)∣∣p dx′dxn

)1/p

dz′

1486 CHAPTER 45. TRACES OF SOBOLEV SPACESUsing the repeated index summation convention to save space, we obtain that in terms ofweak derivatives,Rg.n (x’, xn)-[.. vom r( v(%n)) — | we), (yt) a .|. (*=") (*5*) +6 (“—") wo) dy’6. @) CS) +9 (2) S| and?and soIREn (x’,xn) | < C() B(0,1) [W (an) f (x’ —Xpt!, W(%n))Wan)“f (WA) n (x! — xn! 1) a|C(o ,. zt {has |v (in) f(x +y/, Wen) [ayWan) , ; ;* ooh (WA) n(x + st) |dtdy \Therefore,“ff \/p(/ [ 1 [Ren (x’, Xn) avd <oo 1 hoy \e 1/pCOL L., (ser fy, lwo e+y.wlon))|ay") ava,4C( (f | ( 1 | re \/p° 0 Jit at! JB(0,xn) Jo(45.2.3)Consider the first term on the right. We change variables, letting y’ = z'x,. Then this termbecomesC(o) (ff... Ca lvls) F040! yl) ad) an)! \/p< CO) fro. (/, i= Iv (sn). a! W)) |? deP(Wf), (x +y't) | andy ) avd