45.3. INTRINSIC NORMS 1493

NowG(t)gr (0)−gr (0)

t=

1t

∫ t

0g′r (s)ds− 1

t

∫ t

0G(t− s)hr (s)ds

and so using the assumption that G(t) is uniformly bounded,∣∣∣∣∣∣∣∣G(t)gr (0)−gr (0)t

∣∣∣∣∣∣∣∣≤ 1t

∫ t

0

∣∣∣∣g′r∣∣∣∣A1+M ||hr||A1

≤ 1t

∫ t

0

∣∣∣∣g′r∣∣∣∣(M+1)+M ||Λgr||ds

≤ M+1t

∫ t

0

∣∣∣∣g′r∣∣∣∣A1+ ||gr||D(Λ) ds

Therefore, from Lemma 45.3.2∫∞

0t pθ−p ||G(t)gr (0)−gr (0)||pA1

dtt

=∫

0t pθ

∣∣∣∣∣∣∣∣G(t)gr (0)−gr (0)t

∣∣∣∣∣∣∣∣pA1

dtt

≤∫

0t pθ

∣∣∣∣M+1t

∫ t

0

∣∣∣∣g′r∣∣∣∣A1+ ||gr||D(Λ) ds

∣∣∣∣p dt/t

≤ (M+1)p 2p−1(

11−θ

)p ∫ ∞

0t pθ

(∣∣∣∣g′r∣∣∣∣pA1+ ||gr||pD(Λ)

)Now since gr → f in W, it follows from Lemma 44.1.8 that gr (0)→ u in T and hence byTheorem 44.1.9 this also in A1. Therefore, using Fatou’s lemma in the above along withthe convergence of gr to f ,∫

0t pθ−p ||G(t)u−u||pA1

dtt

≤ (M+1)p 2p−1(

11−θ

)p ∫ ∞

0t pθ

(∣∣∣∣ f ′∣∣∣∣pA1+ || f ||pD(Λ)

)≤ (M+1)p 2p−1

(1

1−θ

)p (||u||pT +δ

)Since u ∈ T, Theorem 44.1.9 implies u ∈ A1 and ||u||A1

≤C ||u||T . Therefore, since δ wasarbitrary, this has shown that u ∈ T0 and

||u||T0≤C (θ , p) ||u||T .

This shows T ⊆ T0 with continuous inclusion.Now it is necessary to take u ∈ T0 and show it is in T. Since u ∈ T0

∞ > ||u||pA1+∫

0tθ p∣∣∣∣∣∣∣∣G(t)u−u

t

∣∣∣∣∣∣∣∣p dtt≡ ||u||pT0

45.3. INTRINSIC NORMS 1493NowG(t) gr (0) — 8, (0) == | gi(s)ds—= f G(t—s)h,(s)dst tand so using the assumption that G(t) is uniformly bounded,lee (0) —g, (0)1 t28 Elsa, + Mls1 t<5 [ \loi|| e+ 1) +m ilAgrllasM+1tt< =f Iletlla, + ligellory 4sTherefore, from Lemma 45.3.2~ 0- dt[PG s-(0)— 8-0), F= [oe G(t) gr (0) —g (0) p dt0) t Al tog (M41 /* p8< fr Plots, +Uleelloxas as} at/t1 P pooc(mpsyrar' (sg) fr (ltl, + lela)Now since g, — f in W, it follows from Lemma 44.1.8 that g,(0) — u in T and hence byTheorem 44.1.9 this also in Ay. Therefore, using Fatou’s lemma in the above along withthe convergence of g, to f,°° dttP8-P t _— pe[2 P\ic@u-uis, §M+1)?2P-! l Pe pe 1 ||P Pp(M+ 1yrar'(— ) fa (FE, + ifllBcay)Pcman! (2) (lif +8)IAIASince u € T, Theorem 44.1.9 implies u € A; and ||u||,, <C||u||7. Therefore, since 6 wasarbitrary, this has shown that u € Tp andIlelln, < C(O.) |lullr-This shows T C 7p with continuous inclusion.Now it is necessary to take u € Jo and show it is in T. Since u € TpG(t)u—u||?t°° dtP Op — Pco> | + ft 7 = [elf