1494 CHAPTER 45. TRACES OF SOBOLEV SPACES

Let φ be a nonnegative decreasing infinitely differentiable function such that φ (0) = 1 andφ (t) = 0 for all t > 1. Then define

f (t)≡ φ (t)1t

∫ t

0G(τ)udτ.

It is easy to see that f (t) ∈ D(Λ) . In fact, changing variables as needed,

1h

(G(h)

∫ t

0G(τ)udτ−

∫ t

0G(τ)udτ

)

=1h

∫ t+h

hG(τ)udτ− 1

h

∫ t

0G(τ)udτ

=1h

∫ t+h

tG(τ)udτ− 1

h

∫ h

0G(τ)udτ

which converges to G(t)u−u and so

Λ

∫ t

0G(τ)udτ = G(t)u−u. (45.3.12)

Thus ∫∞

0t pθ ||Λ f ||pA1

dtt≤

∫∞

0t pθ

∣∣∣∣∣∣∣∣G(t)u−ut

∣∣∣∣∣∣∣∣pA1

dtt

≤ ||u||pT0

Next it is necessary to consider ∫∞

0t pθ∣∣∣∣ f ′∣∣∣∣pA1

dtt.

f ′ (t) = φ′ (t)

1t

∫ t

0G(τ)udτ+

φ (t)(− 1

t2

∫ t

0G(τ)udτ +

1t

G(t)u)

= φ′ (t)

1t

∫ t

0G(τ)udτ +φ (t)

(1t2

∫ t

0(G(t)u−G(τ)u)dτ

)and so there is a constant C depending on φ and the uniform bound on ||G(t)|| such that

∣∣∣∣ f ′ (t)∣∣∣∣A1≤ CX[0,1] (t)

(||u||A1

+1t2

∫ t

0||G(t− τ)u−u||dτ

)= CX[0,1] (t)

(||u||A1

+1t2

∫ t

0||G(τ)u−u||dτ

)

1494 CHAPTER 45. TRACES OF SOBOLEV SPACESLet ¢ be a nonnegative decreasing infinitely differentiable function such that @ (0) = 1 and (t) =0 for all t > 1. Then definef(t) =o()> | G(r)uar,It is easy to see that f (t) € D(A). In fact, changing variables as needed,: (1m [ Gte)uar— [’G(=\uat)1] stth 1 ft= 7 | G(a)ude—— | G(t)udthJn h Jo1 t+h 1 h= 7 | G(t)udt—— | G(t)udth t h 0which converges to G(t)u—u and sotal G(t)udt = G(t)u—u. (45.3.12)0ThusoO co _ P[reriarin, St < fe |SOemey a0 1 f 0 t A, t1< lull,Next it is necessary to consider- 6 » dt[Pir SPa=o'n+t6(t) (2 [ Guar tou)[ "G(t)udt+=> [ Guat +o (3 [ (Gu Geanjar)and so there is a constant C depending on @ and the uniform bound on ||G (t)|| such thatAI Olls, < €%ou 0 (lull + [lige 2)u—ullae)1 t= CF q(t) (ela, +3 f WGC) 4—uliae)