1500 CHAPTER 45. TRACES OF SOBOLEV SPACES

Now taking the sum inside and adjusting the constants yields

≥C (n,θ , p)∫Rn

∫Rn

|u(y)−u(x)|p

|x−y|(n+pθ)dxdy

Thus there exists a constant C (n,θ , p) such that

||u||W θ ,p(Rn) ≥C (n,θ , p)

(||u||pLp +

∫Rn

∫Rn

|u(y)−u(x)|p

|x−y|(n+pθ)dxdy

)1/p

.

Next start with the right side of the above. It suffices to consider only the complicatedterm. First note that for a a vector, (

n

∑i=1

a2i

)p/2

≥ |ai|p

and son

∑i=1|ai|p ≤ n

(n

∑i=1

a2i

)p/2

= n |a|p

from which it follows1n

n

∑i=1|ai|p ≤ |a|p

Then it follows ∫Rn

∫Rn

|u(y)−u(x)|p

|x−y|(n+pθ)dxdy≥ 1

n

∫Rn

∫Rn

∑ni=1 |u(x1, · · · ,xi−1,yi,yi+1, · · · ,yn) − u(x1, · · · ,xi,yi+1, · · · ,yn)|p

|x−y|(n+pθ)dxdy (45.3.15)

Consider the ith term. By Fubini’s theorem it equals

1n

∫· · ·∫ 1(

(yi− xi)2 +∑ j ̸=i (y j− x j)

2) 1

2 (n+pθ)

|u(x1, · · · ,xi−1,yi,yi+1, · · · ,yn) − u(x1, · · · ,xi,yi+1, · · · ,yn)|p

dyidx1 · · ·dxi−1dyi+1 · · ·dyndy1 · · ·dyi−1dxi · · ·dxn

Let t = yi− xi. Then it reduces to

1n

∫· · ·∫ 1(

t2 +∑ j ̸=i (y j− x j)2) 1

2 (n+pθ)

|u(x1, · · · ,xi−1,xi + t,yi+1, · · · ,yn) − u(x1, · · · ,xi,yi+1, · · · ,yn)|p

dtdx1 · · ·dxi−1dyi+1 · · ·dyndy1 · · ·dyi−1dxi · · ·dxn

1500 CHAPTER 45. TRACES OF SOBOLEV SPACESNow taking the sum inside and adjusting the constants yieldsx)|?+ —_ dxd6.) [., pu |x — 7 mea yThus there exists a constant C (n, 6, p) such that1/px)|?\hyorcany = C (0, 8.) (iit +[, [. ee a MAY Tardy)Next start with the right side of the above. It suffices to consider only the complicatedterm. First note that for a a vector,h p/2Ya} >lail?i=lh h p/2aj\? <n a =n\|al?Yilaili=li=land sofrom which it follows1 n~) ail? < Jal?Nijzyx)|?Lp“ |x— a cepa) a dy 2 — ~/ f.an lu(x1,+°° »Xi-1,VisYi+15°°° Yn) _ u(X1,-°° Xi, Vi41,°°° Yn)?|x — y| (n+p@)Then it followsdxdy (45.3.15)Consider the i” term. By Fubini’s theorem it equals1 / / 1nj }(n+p0)(( ~ xj)? + Liz (¥; —x))) :lu (x1,-° »Xi-15 Nis Vit15°°* 5Yn) ~~ U(x1,°* »XiyVi+15°°° Yn)?dyjdx, +++ dxj—1dyj41 +++ dyndy ++ dyj—1dxj-++dXpLet t = y; —x;. Then it reduces to1 / / 1_/...n 2 3(n+p@)(? + Lizi (yj - 4) )\u(x1,-°° Xi—-1, Xi +t, Vit1,°°° Yn) _— u(x,-°° Xi, Vi+15°°° syn)?dtdx) «++ dx;—\dyj+1 +++dyndy, +++ dyj—1dxj +++ dXp