45.3. INTRINSIC NORMS 1501

Now let(s1, · · · ,sn−1) =

(x1− y1, · · · ,xi−1− yi−1,yi+1− xi+1, · · · ,yn− xn)

on the next n− 1 iterated integrals. Then using Fubini’s theorem again and changing thevariables, it equals

1n

∫· · ·∫ 1(

t2 + |s|2) 1

2 (n+pθ)·

|u(s1 + y1, · · · ,yi−1 + si−1,xi + t,xi+1 + si, · · · ,xn + sn−1)

− u(s1 + y1, · · · ,yi−1 + si−1,xi,xi+1 + si, · · · ,xn + sn−1)|p

dy1 · · ·dyi−1dxi · · ·dxnds1 · · ·dsi−1dsi · · ·dsn−1dt

By translation invariance of the measure, the inside integrals corresponding to

dy1 · · ·dyi−1dxi · · ·dxn

simplify and the expression can be written as

1n

∫· · ·∫ 1(

t2 + |s|2) 1

2 (n+pθ)·

|u(x1, · · · ,xi−1,xi + t,xi+1, · · · ,xn) − u(x1, · · · ,xi−1,xi,xi+1, · · · ,xn)|p

dx1 · · ·dxi−1dxi · · ·dxnds1 · · ·dsi−1dsi · · ·dsn−1dt

where I just renamed the variables. Use Fubini’s theorem again to get

1n

∫· · ·∫ 1(

t2 + |s|2) 1

2 (n+pθ)·

|u(x1, · · · ,xi−1,xi + t,xi+1, · · · ,xn) − u(x1, · · · ,xi−1,xi,xi+1, · · · ,xn)|p

ds1 · · ·dsi−1dsi · · ·dsn−1dx1 · · ·dxi−1dxi · · ·dxndt

Now from Lemma 45.3.9, the inside n−1 integrals corresponding to

ds1 · · ·dsi−1dsi · · ·dsn−1

can be replaced withC (n,θ , p)

|t|1+pθ

and this yields

C (n,θ , p)∫R

1

|t|pθ

∫Rn|u(x+ tei)−u(x)|p dx

dtt

=12

C (n,θ , p)∫

0t p(1−θ)

||u(·+ tei)−u(·)||pLp(Rn)

t pdtt

150145.3. INTRINSIC NORMSNow let(81,°°+ 8n-1) =(x1 —Y1e0+ Mi 1 — Yi Vit —Xi415°°* Yn — Xn)on the next — | iterated integrals. Then using Fubini’s theorem again and changing thevariables, it equals1 / / 1ni. F(n+p0)(?+\s7)°\u(sy + y1y++* Vint +871, Mi FEEL HAS), +++ Xn + Sp-1)—U(St+Yiy 0+ Vint + Si-1,81 M41 +955 ¢+* Xn + Sn—1)|?dy, ---dyj;—1dx;---dx)ds,---ds;—\ds;---dsp,_— dtBy translation invariance of the measure, the inside integrals corresponding tody -+-dyj—\dxj+++dXpsimplify and the expression can be written aslen|U(X1 505° XR 1 MEA EMIS An) — U(X Xi Xi, Xi415°°* Xn) |-- dx;_1dx;---dxyds, ---ds;_\ds;---dsp,_ dtdx :1(?+\s?) 3(n+p@)Ppwhere I just renamed the variables. Use Fubini’s theorem again to getwln. yrs\u(x1,-°° Xi, XE, Xi41,°°° Xn) _ u(X1,0°° yXi-1,Xi,Xi+1,°°° Xn)ds .(?+\s?P-- dsj_\ds;+++dSy_—1dx1 +++ dxj;_\dx;---dx,dtNow from Lemma 45.3.9, the inside n — 1 integrals corresponding tocan be replaced withand this yieldsds . -ds;_\d5; ‘ -dSn—|C(n,6,p)jr|1+P91 dc(n,6.p) |e | lu (x-+2¢;) — u(x) dxR |t|?? JR" tye +6) — «(MI ence) dt1 os)= <=C(n,0 pP(l-@ —ao" ”) | 1P t