1504 CHAPTER 45. TRACES OF SOBOLEV SPACES

I will write U instead of U ∩B× (a,b) to save space but this does not matter because u isassumed to be zero outside the indicated region. Then∫

Rn

∫Rn

|Eu(x̂,xn)−Eu(ŷ,yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)2∣∣∣(1/2)(n+pθ)

dxdy

=∫

U

∫U

|u(x̂,xn)−u(ŷ,yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)2∣∣∣(1/2)(n+pθ)

dxdy+

∫U+

∫U

|u(x̂,xn)−Eu(ŷ,yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)2∣∣∣(1/2)(n+pθ)

dxdy+ (45.3.17)

∫U

∫U+

|Eu(x̂,xn)−u(ŷ,yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)2∣∣∣(1/2)(n+pθ)

dxdy+ (45.3.18)

∫U+

∫U+

|Eu(x̂,xn)−Eu(ŷ,yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)2∣∣∣(1/2)(n+pθ)

dxdy (45.3.19)

Consider the second of the integrals on the right of the equal sign. Using Fubini’s theorem,it equals ∫

U

∫U+

|u(x̂,xn)−u(ŷ,2g(ŷ)− yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)2∣∣∣(1/2)(n+pθ)

dydx

=∫

U

∫B

∫∞

g(ŷ)

|u(x̂,xn)−u(ŷ,2g(ŷ)− yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)2∣∣∣(1/2)(n+pθ)

dyndŷdx

=∫

U

∫B

∫ g(ŷ)

−∞

|u(x̂,xn)−u(ŷ,zn)|p∣∣∣|x̂− ŷ|2 +(xn− (2g(ŷ)− zn))2∣∣∣(1/2)(n+pθ)

dzndŷdx

I need to estimate |xn− zn| .

|xn− zn| ≤ |xn−g(x̂)|+ |g(x̂)−g(ŷ)|+ |g(ŷ)− zn|

≤ g(x̂)− xn +K |x̂− ŷ|+ yn−g(ŷ)≤ |yn− xn|+2K |x̂− ŷ|

and so

|xn− zn|2 ≤ 8K2 |x̂− ŷ|2 +2 |yn− xn|2

≤ |x̂− ŷ|2 +2 |yn− xn|2

1504CHAPTER 45.TRACES OF SOBOLEV SPACESI will write U instead of UMB x (a,b) to save space but this does not matter because wu isassumed to be zero outside the indicated region. Thenfos devt“higLbJohhhah x Xn) — Eu (Y,yn)|?9 | /2y wpe) AYXn — Yn) |(x Xn) —u(Y,yn)|?5/2) erp ay +—Yn) |Ju (x x Xn) —Eu(y »Yn)|?(i/2\(ap0y AXA +” |i@-9P + Gn —yn)?||Eu(X,Xn) —U(¥,¥n)|?" 5/2) arpa) A+~y| + (Xn — Yn) |ous x Xn) — Eu(y,yn)|?a | /2) (mrp) AY(Xn — Yn) |(45.3.17)(45.3.18)(45.3.19)Consider the second of the integrals on the right of the equal sign. Using Fubini’s theorem,it equalsLLoho),u(X,Xn) —u(Y,2g(¥) —yn)|?-_ 7 | inrpay Oe(Xn —Yn) |u(X,Xn) —u(¥,28(¥) —yn)|?“apoyo nds9 + (%n—yn)|lu (X, Xn) —Uu (y, zn)|?dzndyadxUr"I need to estimate |x, — Z|.Xn —Zn| < Xn<<and soXnx A (1/2)(n+p@)+ (m= 2e(9)—2»))|— g(x)|+ |g (x) —8(Y)| +18 (¥) —znl8 (X) —X%n + K |x—Y|+yn—8(y)lyn —Xn| + 2K |x—y||? 8K? IR —F|> +2 [yn — nl?IA IA[R—I)? +2 lyn xn)?