1504 CHAPTER 45. TRACES OF SOBOLEV SPACES
I will write U instead of U ∩B× (a,b) to save space but this does not matter because u isassumed to be zero outside the indicated region. Then∫
Rn
∫Rn
|Eu(x̂,xn)−Eu(ŷ,yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)2∣∣∣(1/2)(n+pθ)
dxdy
=∫
U
∫U
|u(x̂,xn)−u(ŷ,yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)2∣∣∣(1/2)(n+pθ)
dxdy+
∫U+
∫U
|u(x̂,xn)−Eu(ŷ,yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)2∣∣∣(1/2)(n+pθ)
dxdy+ (45.3.17)
∫U
∫U+
|Eu(x̂,xn)−u(ŷ,yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)2∣∣∣(1/2)(n+pθ)
dxdy+ (45.3.18)
∫U+
∫U+
|Eu(x̂,xn)−Eu(ŷ,yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)2∣∣∣(1/2)(n+pθ)
dxdy (45.3.19)
Consider the second of the integrals on the right of the equal sign. Using Fubini’s theorem,it equals ∫
U
∫U+
|u(x̂,xn)−u(ŷ,2g(ŷ)− yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)2∣∣∣(1/2)(n+pθ)
dydx
=∫
U
∫B
∫∞
g(ŷ)
|u(x̂,xn)−u(ŷ,2g(ŷ)− yn)|p∣∣∣|x̂− ŷ|2 +(xn− yn)2∣∣∣(1/2)(n+pθ)
dyndŷdx
=∫
U
∫B
∫ g(ŷ)
−∞
|u(x̂,xn)−u(ŷ,zn)|p∣∣∣|x̂− ŷ|2 +(xn− (2g(ŷ)− zn))2∣∣∣(1/2)(n+pθ)
dzndŷdx
I need to estimate |xn− zn| .
|xn− zn| ≤ |xn−g(x̂)|+ |g(x̂)−g(ŷ)|+ |g(ŷ)− zn|
≤ g(x̂)− xn +K |x̂− ŷ|+ yn−g(ŷ)≤ |yn− xn|+2K |x̂− ŷ|
and so
|xn− zn|2 ≤ 8K2 |x̂− ŷ|2 +2 |yn− xn|2
≤ |x̂− ŷ|2 +2 |yn− xn|2