54.3. SECTORIAL OPERATORS AND ANALYTIC SEMIGROUPS 1719

= π

(cos(

π

2(1−2α)

)+ isin

2(1−2α)

))Then equating the imaginary parts yields

sin((1−2α)π)∫

0

u2α−1

1+u2 du = π sin(

π

2(1−2α)

)and so using the trig identities for the sum of two angles,∫

0

u2α−1

1+u2 du =π(sin(

π

2 (1−2α)))

2sin(

π

2 (1−2α))

cos(

π

2 (1−2α))

2cos(

π

2 (1−2α)) = π

2sin(πα)

It remains to verify the last identity.

Γ(α)Γ(β ) ≡∫

0

∫∞

0tα−1e−tsβ−1e−sdsdt

=∫

0

∫∞

ttα−1e−u (u− t)β−1 dudt

=∫

0e−u

∫ u

0tα−1 (u− t)β−1 dtdu

=∫ 1

0xα−1 (1− x)β−1 dx

∫∞

0e−uuα+β−1du

=

(∫ 1

0xα−1 (1− x)β−1 dx

)Γ(α +β )

This proves the lemma.If it is not stated otherwise, in all that follows α > 0.

Definition 54.3.16 Let A be a sectorial operator corresponding to the sector S−aφ where−a < 0. Then define for α > 0,

(−A)−α ≡ 1Γ(α)

∫∞

0tα−1S (t)dt

where S (t) is the analytic semigroup generated by A as in Corollary 54.3.8. Note thatfrom the estimate, ||S (t)|| ≤ Me−at of this corollary, the integral is well defined and is inL (H,H).

Theorem 54.3.17 For (−A)−α as defined in Definition 54.3.16

(−A)−α (−A)−β = (−A)−(α+β ) (54.3.17)

Also(−A)−1 (−A) = I, (−A)(−A)−1 = I (54.3.18)

and (−A)−α is one to one if α ≥ 0, defining A0 ≡ I.

54.3. SECTORIAL OPERATORS AND ANALYTIC SEMIGROUPS 17191 1=1 (cos (5 (1 ~2a)) +isin (5 @! ~2a))))Then equating the imaginary parts yields. oo 2-1 . 1sin ((1 — 2a) n) [ Ta = 7sin (5 (1 ~2a))and so using the trig identities for the sum of two angles,—_ lu n (sin (5 (1—2a@)))0 1+w sin (¥ (1 —2a@)) cos (% (1—2a))1 12cos (F (1 —2a)) ~ 2sin (z100)It remains to verify the last identity.| [ 1% le sB-leSdsdt0 Jo[ / 1? eo" (y—1)P! duat0 Stfoc ru= [ "| 1°! (w—t)P drdu0 01 eo= | xo! (1x)? Vax [ ey %tB-l dy0 J0(fo (1—x)P-! ax) T(a+B)T'(a)P(B)This proves the lemma.If it is not stated otherwise, in all that follows a > 0.Definition 54.3.16 Let A be a sectorial operator corresponding to the sector S_gg where—a <0. Then define for a > 0,1 ‘co—A sof t*!$(t) dt(A) “= Fey [istowhere S(t) is the analytic semigroup generated by A as in Corollary 54.3.8. Note thatfrom the estimate, \|S(t)|| <Me~ of this corollary, the integral is well defined and is in& (H,H).Theorem 54.3.17 For (—A) % as defined in Definition 54.3.16(—A)~*(—A)P = (—a) (28) (54.3.17)Also(—A)"' (—A) =I, (—A)(—A)! =1 (54.3.18)and (—A)“ is one to one if & > 0, defining A° = I.