1722 CHAPTER 54. FUNCTIONAL ANALYSIS APPLICATIONS
= Γ(1−α)∫
∞
0tα−1S (t)dt = Γ(α)Γ(1−α)(−A)−α
=
(∫ 1
0xα−1 (1− x)−α dx
)(−A)−α =
π
sin(πα)(−A)−α
and so this gives the formula
(−A)−α =sin(πα)
π
∫∞
0λ−α (λ I−A)−1 dλ .
This proves 54.3.20.
Definition 54.3.18 For α ≥ 0, define (−A)α on D((−A)α
)≡ (−A)−α (H) by
(−A)α ≡((−A)−α
)−1
Note that if α,β > 0, then if x ∈ D((−A)α+β
),
(−A)α+β x =((−A)−(α+β )
)−1x =(
(−A)−α (−A)−β)−1
x = (−A)β (−A)α x. (54.3.21)
Next let β > α > 0 and let x ∈ D((−A)β
). Then from what was just shown,
(−A)α (−A)β−α x = (−A)β x
and so(−A)β−α x = (−A)−α (−A)β x
If x ∈D((−A)β
), does it follow that (−A)−α x ∈D
((−A)β
)? Note x = (−A)−β y and so
(−A)−α x = (−A)−α (−A)−β y = (−A)−(α+β ) y ∈ D((−A)α+β
).
Therefore, from 54.3.21,
(−A)β−α x = (−A)β−α (−A)α((−A)−α x
)= (−A)β (−A)−α x.
Theorem 54.3.19 The definition of (−A)α is well defined and (−A)α is densely definedand closed. Also for any α > 0,∣∣∣∣(−A)α S (t)
∣∣∣∣≤ Cα
δ
1tα
e−δ t (54.3.22)
where −δ > −a. Furthermore, Cα is bounded as α → 0+ and is bounded on compactintervals of (0,∞). Also for α ∈ (0,1) and x ∈ D
((−A)α
),
||(S (t)− I)x|| ≤ C1−α
αδtα∣∣∣∣(−A)α x
∣∣∣∣ (54.3.23)