54.3. SECTORIAL OPERATORS AND ANALYTIC SEMIGROUPS 1725
and so on D((−A)α
),
S (s) = (−A)α S (s)(−A)−α , S (s)(−A)α = (−A)α S (s)
Now for x ∈ D((−A)α
),
||(S (t)− I)x|| =
∣∣∣∣∣∣∣∣−∫ t
0(−A)S (s)xds
∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣−∫ t
0(−A)1−α (−A)α S (s)xds
∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣−∫ t
0(−A)1−α S (s)(−A)α xds
∣∣∣∣∣∣∣∣≤
∫ t
0
∣∣∣∣∣∣(−A)1−α S (s)∣∣∣∣∣∣ds
∣∣∣∣(−A)α x∣∣∣∣
≤∫ t
0
C1−α
δ
1s1−α
e−δ sds∣∣∣∣(−A)α x
∣∣∣∣≤ C1−α
δ
1α
tα∣∣∣∣(−A)α x
∣∣∣∣and this shows 54.3.23.
Next consider 54.3.24. Let x ∈ H and β ∈ (0,1) . Then∣∣∣∣∣∣(−A)−β x∣∣∣∣∣∣= 1
Γ(β )
∣∣∣∣∣∣∣∣∫ ∞
0tβ−1S (t)xdt
∣∣∣∣∣∣∣∣=
1Γ(β )
∣∣∣∣∣∣∣∣∫ η
0tβ−1S (t)xdt +
∫∞
η
tβ−1S (t)xdt∣∣∣∣∣∣∣∣
≤ 1Γ(β )
∫η
0tβ−1 ||S (t)x||dt +
1Γ(β )
∣∣∣∣∣∣∣∣∫ ∞
η
tβ−1S (t)xdt∣∣∣∣∣∣∣∣
≤ CΓ(β )
ηβ
β||x||+ 1
Γ(β )
∣∣∣∣∣∣∣∣∫ ∞
η
tβ−1S (t)xdt∣∣∣∣∣∣∣∣
≤ CΓ(β )
ηβ
β||x||+
1Γ(β )
∣∣∣∣∣∣∣∣ηβ−1S (η)A−1x+(1−β )∫
∞
η
tβ−2S (t)A−1xdt∣∣∣∣∣∣∣∣
≤ 1Γ(β )
(Cηβ
β||x||+η
β−1 ∣∣∣∣A−1x∣∣∣∣+(1−β )
∣∣∣∣A−1x∣∣∣∣∫ ∞
η
tβ−2dt
)
=1
Γ(β )
(Cηβ
β||x||+2η
β−1 ∣∣∣∣A−1x∣∣∣∣) .