1724 CHAPTER 54. FUNCTIONAL ANALYSIS APPLICATIONS
Then with this formula,∣∣∣∣(−A)α S (t)∣∣∣∣ =
∣∣∣∣∣∣(−A)S (t)(−A)−(1−α)∣∣∣∣∣∣
=
∣∣∣∣∣∣∣∣ 1Γ(1−α)
∫∞
0s1−α (−A)S (t + s)ds
∣∣∣∣∣∣∣∣≤ N
Γ(1−α)
∫∞
0
s1−α
(t + s)e−δ (s+t)ds
=N
Γ(1−α)
∫∞
t
(u− t)1−α
ue−δuds
≤ NΓ(1−α)
∫∞
t
(1− t
u
)1−α 1uα
e−δuds
≤ NΓ(1−α)
1tα
∫∞
te−δuds =
NΓ(1−α)δ
1tα
e−δ t
≡ Cα
δ
1tα
e−δ t .
this establishes the formula when α ∈ [0,1). Next suppose α = m, a positive integer.
||AmS (t)|| =
∣∣∣∣∣∣∣∣AmS( t
m
)m∣∣∣∣∣∣∣∣
=
∣∣∣∣∣∣∣∣(AS( t
m
))m∣∣∣∣∣∣∣∣≤ N
tm mm.
This is why the above inequality holds.If α,β > 0, ∣∣∣∣∣∣Aα+β S (t)
∣∣∣∣∣∣ =∣∣∣∣∣∣Aα+β S
( t2
)S( t
2
)∣∣∣∣∣∣=
∣∣∣∣∣∣Aα S( t
2
)Aβ S
( t2
)∣∣∣∣∣∣≤ Cα
tα
Cβ
tβe−2δ t =
Ctα+β
e−δ t
Suppose now that α > 0. Thenα = m+β
where β ∈ [0,1). Then from what was just shown,∣∣∣∣∣∣Am+β S (t)∣∣∣∣∣∣≤ C
tm+βe−δ t .
Next consider 54.3.23. First note that whenever α > 0,
(−A)−α S (s) = S (s)(−A)−α