1724 CHAPTER 54. FUNCTIONAL ANALYSIS APPLICATIONS

Then with this formula,∣∣∣∣(−A)α S (t)∣∣∣∣ =

∣∣∣∣∣∣(−A)S (t)(−A)−(1−α)∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣ 1Γ(1−α)

∫∞

0s1−α (−A)S (t + s)ds

∣∣∣∣∣∣∣∣≤ N

Γ(1−α)

∫∞

0

s1−α

(t + s)e−δ (s+t)ds

=N

Γ(1−α)

∫∞

t

(u− t)1−α

ue−δuds

≤ NΓ(1−α)

∫∞

t

(1− t

u

)1−α 1uα

e−δuds

≤ NΓ(1−α)

1tα

∫∞

te−δuds =

NΓ(1−α)δ

1tα

e−δ t

≡ Cα

δ

1tα

e−δ t .

this establishes the formula when α ∈ [0,1). Next suppose α = m, a positive integer.

||AmS (t)|| =

∣∣∣∣∣∣∣∣AmS( t

m

)m∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣(AS( t

m

))m∣∣∣∣∣∣∣∣≤ N

tm mm.

This is why the above inequality holds.If α,β > 0, ∣∣∣∣∣∣Aα+β S (t)

∣∣∣∣∣∣ =∣∣∣∣∣∣Aα+β S

( t2

)S( t

2

)∣∣∣∣∣∣=

∣∣∣∣∣∣Aα S( t

2

)Aβ S

( t2

)∣∣∣∣∣∣≤ Cα

tβe−2δ t =

Ctα+β

e−δ t

Suppose now that α > 0. Thenα = m+β

where β ∈ [0,1). Then from what was just shown,∣∣∣∣∣∣Am+β S (t)∣∣∣∣∣∣≤ C

tm+βe−δ t .

Next consider 54.3.23. First note that whenever α > 0,

(−A)−α S (s) = S (s)(−A)−α

1724 CHAPTER 54. FUNCTIONAL ANALYSIS APPLICATIONSThen with this formula,Aatsinl] = |S ri 0) [ =N co (,,__4\l-@_ / (u t) e “dsa) t(—A) $(t)(—A)1(1Fava I, s'~® (_A) S(t+5)ds0 5(s+1) ggrd- uN ° t\!-o |< ——_ 1--) —e "q~ ra—a | ( u rad °N 1 °° —s N 1 —6ét< = — “ds = —————_ —= rasa | eT ayo 1_ Cal 5= 3 aethis establishes the formula when a@ € [0, 1). Next suppose o& = m, a positive integer.A"s ams (L)"t)|| = —i4rsioll = |lans (4)m= ||s()"|| <hrm t”This is why the above inequality holds.If a,B > 0,astscol| = lja*s(5)s(5) |aes(5) Ps (5)||Ca CB 281 _ Cst& 4B pa+BteSuppose now that a@ > 0. Thena=m+Bwhere B € [0,1). Then from what was just shown,Ccm+B —otA""?S0|| < gerneNext consider 54.3.23. First note that whenever @ > 0,(—A)-“S(s) =S(s)(—A) @