54.3. SECTORIAL OPERATORS AND ANALYTIC SEMIGROUPS 1727

Now let 1−β = α and obtain∣∣∣∣(−A)α y∣∣∣∣≤ ε ||(−A)y||+Cε

−α/(1−α) ||y||

This proves 54.3.24.Finally choose ε to minimize the right side of the above expression. Thus let

ε =

(α ||y||C

||(−A)y||(1−α)

)1−α

Then the above expression becomes∣∣∣∣(−A)α y∣∣∣∣ ≤ ||(−A)y||

(α ||y||C

||(−A)y||(1−α)

)1−α

+C

((α ||y||C

||(−A)y||(1−α)

)1−α)−α/(1−α)

||y||

= ||(−A)y||α ||y||1−α

(αC

(1−α)

)1−α

+ ||(−A)y||α ||y||1−α

(αC

(1−α)

)−α

=

((αC

(1−α)

)1−α

+

(αC

(1−α)

)−α)||(−A)y||α ||y||1−α

≤ C′ ||(−A)y||α ||y||1−α

where C′ does not depend on α ∈ (0,1) . To see such a constant exists, note

limα→1

(αC

(1−α)

)1−α

= 1

and

limα→1

(αC

(1−α)

)−α

= 0

while

limα→0

(αC

(1−α)

)1−α

= 0, limα→0

(αC

(1−α)

)−α

= 1

Of course C′ depends on C but as shown above, this did not depend on α ∈ (0,1) . Thisproves 54.3.25.

The following corollary follows from the proof of the above theorem.

Corollary 54.3.20 Let α ∈ (0,1) . Then for all ε > 0, there exists a constant C (α,ε) suchthat ∣∣∣∣(−A)−α x

∣∣∣∣≤ ε ||x||+C (ε,α)∣∣∣∣∣∣(−A)−1 x

∣∣∣∣∣∣Also if A−1 is compact, then so is (−A)−α for all α ∈ (0,1).

54.3. SECTORIAL OPERATORS AND ANALYTIC SEMIGROUPS 1727Now let 1 — B = @ and obtain||(-A)*y|] < €||(-A) yl] +Ce 2/0 JyThis proves 54.3.24.Finally choose € to minimize the right side of the above expression. Thus let(allylic \h*©=(THaca)Then the above expression becomesa C l-a-ayl| < Adsl (oe_ —a/(1—a@)— aflyl[C l-a(i) ) Ibi(AI It ( ac "(1—@)a —a ae ”+lIC-AdoIl* Ib (GES)= (Coe (°S) ) IA) yl IpC’||(—A) || [yl]where C’ does not depend on a € (0,1). To see such a constant exists, noteIAac l-alim =1a+1\ (1—a@)~a,tim (—“2_) =oa+1\ (1—a@)1l-a —alim (2° ~0, im(——_) 1a0 \ (1—@) a0 \(1—@)Of course C’ depends on C but as shown above, this did not depend on @ € (0,1). Thisproves 54.3.25.The following corollary follows from the proof of the above theorem.andwhileCorollary 54.3.20 Let a € (0,1). Then for all € > 0, there exists a constant C(0,€) suchthatAy] <elbl|+C(€,0)||(-4 ||Also if A! is compact, then so is (—A) ® for all a € (0,1).