1728 CHAPTER 54. FUNCTIONAL ANALYSIS APPLICATIONS
Proof: The first part is done in the above theorem. Let S be a bounded set and letη > 0. Then let ε > 0 be small enough that for all x ∈ S,ε ||x|| < η/4. Let
{(−A)−1 xn
}be a η/(2+2C (ε,α)) net for (−A)−1 (S) . Then if (−A)−α x ∈ (−A)−α S, there exists xnsuch that ∣∣∣∣∣∣(−A)−1 xn− (−A)−1 x
∣∣∣∣∣∣< η
2+2C (ε,α).
Then∣∣∣∣(−A)−α xn− (−A)−α x∣∣∣∣ ≤ ε ||xn− x||+C (ε,α)
∣∣∣∣∣∣(−A)−1 xn− (−A)−1 x∣∣∣∣∣∣
<η
2+
η
2= η
showing (−A)−α (S) has a η net. Thus (−A)−α is compact. This proves the corollary.The next proposition gives a general interpolation inequality.
Proposition 54.3.21 Let 0 < α < β and let
γ = θβ +(1−θ)α, θ ∈ (0,1) .
Then there exists a constant, C such that for all x ∈ D((−A)β
),
∣∣∣∣(−A)γ x∣∣∣∣≤C
∣∣∣∣∣∣(−A)β x∣∣∣∣∣∣θ ∣∣∣∣(−A)α x
∣∣∣∣1−θ.
Proof: This is an exercise in using 54.3.22. Letting x ∈ D((−A)β
),
(−A)γ x = (−A)θ (−A)−θ (−A)γ x
Therefore, letting C denote a generic constant, it follows since (−A)θ is closed,
Γ(θ)∣∣∣∣(−A)γ x
∣∣∣∣= ∣∣∣∣∣∣∣∣∫ ∞
0tθ−1 (−A)θ S (t)(−A)γ xdt
∣∣∣∣∣∣∣∣≤
∫η
0tθ−1
∣∣∣∣∣∣(−A)θ (−A)γ−β S (t)(−A)β x∣∣∣∣∣∣dt
+∫
∞
η
tθ−1∣∣∣∣∣∣(−A)θ (−A)γ−α S (t)(−A)α x
∣∣∣∣∣∣dt
≤ C∫
η
0tθ−1t−θ tβ−γ dt
∣∣∣∣∣∣(−A)β x∣∣∣∣∣∣+C
∫∞
η
tθ−1t−θ tα−γ dt∣∣∣∣(−A)α x
∣∣∣∣= C
(ηβ−γ
β − γ
∣∣∣∣∣∣(−A)β x∣∣∣∣∣∣+ η−(γ−α)
γ−α
∣∣∣∣(−A)α x∣∣∣∣)