54.3. SECTORIAL OPERATORS AND ANALYTIC SEMIGROUPS 1729
and now writing in what γ is in terms of θ yields
Γ(θ)∣∣∣∣(−A)γ x
∣∣∣∣≤C(
1β −α
)((ηβ−α
)1−θ
(1−θ)
∣∣∣∣∣∣(−A)β x∣∣∣∣∣∣+ (ηβ−α
)−θ
θ
∣∣∣∣(−A)α x∣∣∣∣)
Letting λ = ηβ−α , it follows
Γ(θ)∣∣∣∣(−A)γ x
∣∣∣∣≤C(
1β −α
)(λ
1−θ
(1−θ)
∣∣∣∣∣∣(−A)β x∣∣∣∣∣∣+ λ
−θ
θ
∣∣∣∣(−A)α x∣∣∣∣)
then let
λ =
∣∣∣∣(−A)α x∣∣∣∣∣∣∣∣∣∣(−A)β x∣∣∣∣∣∣
which is obtained from minimizing the expression on the right in the above. then placingthis in the inequality yields
Γ(θ)∣∣∣∣(−A)γ x
∣∣∣∣≤ C
(1
β −α
)(||(−A)α x||∣∣∣∣∣∣(−A)β x
∣∣∣∣∣∣)1−θ
(1−θ)
∣∣∣∣∣∣(−A)β x∣∣∣∣∣∣
+
(||(−A)α x||∣∣∣∣∣∣(−A)β x
∣∣∣∣∣∣)−θ
θ
∣∣∣∣(−A)α x∣∣∣∣
=C(
1β −α
)(1
(1−θ)+
1θ
)∣∣∣∣(−A)α x∣∣∣∣1−θ
∣∣∣∣∣∣(−A)β x∣∣∣∣∣∣θ
and this proves the proposition.Note that the constant is not bounded as θ → 1.Here is another interesting result about compactness.
Proposition 54.3.22 Let A be sectorial for S−a,φ where −a < 0. Then the following areequivalent.
1. (−A)−α is compact for all α > 0.
2. S (t) is compact for each t > 0.