1730 CHAPTER 54. FUNCTIONAL ANALYSIS APPLICATIONS
Proof: First suppose (−A)−α is compact for all α > 0. Then
Γ(α)(−A)−α =∫ t
0sα−1S (s)ds+
∫∞
tsα−1S (s)ds
=tα
αS (t)−
∫ t
0
sα
αAS (s)ds+ sα−1S (s)A−1|∞t
−(α−1)∫
∞
tsα−2S (s)A−1ds
Now ∣∣∣∣∣∣∣∣ sα
αAS (s)
∣∣∣∣∣∣∣∣≤Csα−1
α
and so the second integral satisfies∣∣∣∣∣∣∣∣∫ t
0
sα
αAS (s)ds
∣∣∣∣∣∣∣∣≤Ctα
α2
Γ(α)(−A)−α = O(
tα
α2
)+
tα
αS (t)
−tα−1A−1S (t)− (α−1)∫
∞
tsα−2S (s)dsA−1
It follows that for t > 0, and ε > 0 given,
S (t) =
(tα
α− tα−1
)−1 (Γ(α)(−A)−α
+(α−1)∫
∞
tsα−2S (s)dsA−1 +O
(tα
α2
))=
(tα
α− tα−1
)−1 (Γ(α)(−A)−α
+(α−1)∫
∞
tsα−2S (s)dsA−1
)+O
(1α
)= Nα +O
(1α
).
where Nα is a compact operator. Now let B be a bounded set in H, ||x|| ≤M for all x∈B andlet η > 0 be given. Then choose α large enough that
∣∣∣∣O( 1α
)∣∣∣∣< η
4+4M . Then there existsa η/2 net, {Nα xn}N
n=1 for Nα (B) . Then consider {S (t)xn}Nn=1 . For x ∈ B, there exists xn
such that ||Nα xn−Nα x||< η/2. Then
||S (t)x−S (t)xn|| ≤ ||S (t)x−Nα x||+ ||Nα x−Nα xn||+ ||Nα xn−S (t)xn||